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2 JOHANNES ANSCHUTZ

1. LOCAL CLASS FIELD THEORY VIA LUBIN-TATE THEORY

In the first part of the course we want to discuss local class field theory via
Lubin-Tate theory following [LT65], [Gol81] and [Ser13].

1.1. The global and local Kronecker-Weber theorem. For N > 1 we set
py ={zeC| 2N =1} ={>"*NecC|ke{0,...,N-1}} = Z/N

as the subgroup group in C* of N-roots of unity. Clearly, each element of uy
is algebraic over Q, and therefore lies in the algebraic closure Q of Q in C. The
subfield

Q(un) €Q
generated by the elements of uy is called the N-th cyclotomic field, and it is the
prototypical example of a Galois extension of Q with an abelian Galois group.
Indeed, there exists a chain of canonical isomorphism

Gal(Q(un)/Q) = Aut(un) = (Z/N)*.

Let us mention the following famous theorem of Kronecker-Weber.

Theorem 1.1 (Kronecker-Weber). Let L/Q be a finite abelian extension, i.e., a
finite Galois extension with abelian Galois group. Then there exists an N > 1 and
an embedding L C Q(un).

In other words,

Qpoo) = J Q1)

is the maximal abelian extension of Q. Theorem is a massive generalization of
the fact that each quadratic extension of Q is contained in a cyclotomic field. For
example, if p € Zsg is an odd prime and p* = (—1)P=1/2p_then Q(v/p*) C Q(¢p)
as Q((p) contains a unique quadratic field by Galois theory and this field can only
be ramified at p.

Now fix a prime p and consider the p-adic field Q,, which is defined as the
completion of Q for the p-adic norm

| — |p: Q — Rzo, xT p_yp(z),
where

(1) vp(a) = {"O’ e

a, ifx=p*,

m,n € Z\ {0}, ptmn,

is the p-adic valuation.
The theorem of Kronecker-Weber admits the following “local” analog over Q,.

Theorem 1.2 (local Kronecker-Weber). Let L/Q, be a finite abelian extension.
Then there exists an N > 1 and an embedding L C Qp(MN)- In other words,

Qp(poo)

is the mazimal abelian extension of Q.

Here, Q,(un) denotes the composite of Q, and Q(u ) inside an algebraic closure
of Q,, and similarly for Q,(teo)-

Actually, the conjunction of the local Kronecker-Weber theorem for all primes p
implies the Kronecker-Weber theorem for Q, cf. [Sutl7, Lecture # 20].
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It is one aim of the course to generalize Theorem [I.2]to arbitrary finite extensions
of Q, (or finite extensions of F,,((t))), i.e., to describe the maximal abelian extension
K?b for any non-archimedean local field. We want to explain in the following how
this description looks like, but first we will provide a reminder on (non-archimedean)
local fields.

1.2. Reminder on (non-archimedean) local fields. The p-adic valuation
vp: Q = Z U {oo}
introduced in (Equation ) has the following properties:

(1) vp(x) = oo if and only if z = 0.

(2) vp(ay) = vp(z) + vp(y) for o,y € QH
(3) vp(z+y) > min{v,(z),v,(y)} for z,y € Q (the “triangle inequality”).

A field K equipped with a function v: K — Z U {oco} satisfying these properties
for Q replaced by K is called a discretely valued field. Examples are Q with the p-
adic valuation v, Q, with the canonical extension of v, (which we will still denote
vp) or Fp((¢)) with the t-adic valuation

ve: Bp((t) = ZU{oo}, Y ait' = inf{i| a; # 0}.
i>>—00
Let (K, v) be a discretely valued field. Then
O ={ze K |v(z) >0}

is a subring of K (called “its ring of integers”), which satisfies the following prop-
erties:

(1) Ok is local with maximal ideal mg := {z € K | v(z) > 0}, in particular
OIX(:OK\mK:{IGK | V(I):O},

where the LHS denotes the units in O,

(2) mg is generated over Ok by each element 7 € K with v(z) =1 (such a «
is called a “uniformizer”).

(3) The non-zero ideals of Ok are indexed by N via

n— (7).
(4) The ring Ok is normal, i.e., integrally closed in K.

In other words, O is a discrete valuation ring, i.e., a local noetherian ring which
is regular of Krull dimension 1. We see that for each uniformizer 7 € K the map

Zx O — K*, (n,u) — 7"u
is an isomorphism.
Exercise 1.3. Deduce all the above statements from the properties of v.
The triangle inequality for v has the following, maybe surprising, corollary.
Lemma 1.4 (“strong triangle inequality”). If z,y € K and v(x) # v(y), then
v(z +y) = min{v(z),v(y)}.

Here we set 0o +n = oo for all n € Z.
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Proof. We may assume v(x) < v(y). Then

v(z) > min{v(z +y),v(y)},
and v(x) < v(y) together with the triangle inequality imply v(z) > v(z +y) > v(zx)
and thus v(z) = v(z + y) as desired. O

Let a > 1 be any real number, then the map
d: K x K - R, (z,y) — a V@Y

defines a metric on K and we say that K is complete if the metric space (K, d) is
complete, i.e., Cauchy sequences in (K, d) converge to a unique limit. Each metric
space admits a completion (K, d), and in the case of (K, d) one can check that K
is again naturally a field. The valuation v on K extends uniquely to a valuation ©
on K, and this makes (K, ) into a discretely valued field (called the “completion”
of (K,v)). For example, Q, was defined as the completion of (Q, v/,) while the field
F,((t)) of Laurent series with coefficients in F), is already complete for its t-adic
valuation. A different construction of the completion is the following: Take any
element z € mg \ {0} and define
Ok = @OK/(I)”

n>1

(the “(z)-adic completion” of Ok). One checks that Ok is an integral domain, and
that

~ — 1
K = Frac(Og) & OK[*].
x
The essential point is that the subspace topology of O for the metric topology on
K agrees with the (z)-adic topology of Ok.

The following statement is an important property of complete discretely valued
fields. It fails without assuming completeness.

Proposition 1.5. Let (K,v) be a complete discretely valued field, and L/K a
finite extension of degree n. Then v admits a unique extension to a valuation
V' L — 17U {cc}. For each x € L we have

1
V(@) = —v(Np/ (@),
where Np /i L — K is the norm, and L is complete.

The proof can be found in [Tia, Theorem 8.5.1.]. The critical point is to show
that the function

V(=) = “u(Nyx(-)): L=~ U (oo}

satisfies the triangle inequality.
This in turn uses Hensel’s lemma, which we recall here for later use.

Lemma 1.6 (Hensel’s lemma). Let K be a complete discretely valued field with
residue field k, g(X) € Ok[X] a monic polynomial with reduction g(X) € k[X].
Assume that g = hy - hy for hy, hy € k[X] such that (hy,hs) = 1. Then there exists
a factorization

g = hi-hg € OK[X]
with deg(h;) = deg(h;), i = 1,2, and h; = h; mod mg. Moreover, hy, hy are unique
with these properties up to multiplication by a unit in Ok .
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A sample application of Hensel’s lemma is that for a prime p the field Q, contains
the p — 1-th roots of unity as the polynomial X7~ — 1 € Z,[X] reduces to

xrt—1= ] (X —a) eF,[X].
a€Fy

Proof. The proof can be found in [Tial Proposition 8.4.1.] (or more generally in
[Stal, Tag 0ALJ] for any ring R which is I-adically complete for an ideal I C R).
We only sketch the proof of the special (actually, equivalent, cf. [Stal7, Tag 03QH])
case that

h=X-5
for some 8 € k. We then have to show the existence of some a € Ok lifting 5,

which is a zero of g. The assumption (hy, hs) = 1 is equivalent to g’'(8) # 0. Let
ap € Ok be any lift of 8. The idea of proof is to show that the Newton algorithm

g(an)
g (o)’
for finding zeros of polynomials yields a Cauchy sequence {ay,}n>o in K whose

limit « (which exists by completeness of K!) fulfils the requirements. We leave the
details as an exercise. (]

n>0

- 9

Ap41 = Oy —

The ring of integers Oy, agrees with the integral closure of Ok in L (this appears
in the proof of Proposition [1.5)). We record the following statement, which again
needs completeness.

Lemma 1.7. Let L/K be a finite extension of complete discretely valued fields of
degree n. Then the ring Of, is a finite free Og-module of rank n.

Proof. Cf. [Tia, Lemma 9.1.1.]. O

Let us now give the definition of a (non-archimedean) local field.

Definition 1.8. A (non-archimedean) local field is a finite extension of Q, or
F,((t)) for some prime p.

Equivalently, a (non-archimedean) local field is the field of fractions of a complete
discrete valuation ring A with finite residue field k = A/m 4. For a local field K we
denote by

vi: K - Z U {oo}

its (normalized) valuation. By definition, finite extensions of local fields are again
local fields.
We now recall some terminology concerning finite extensions of local fields.

Definition 1.9. Let L/K be a finite extension of local fields of degree n, let O C
Oy be their rings of integers, and let 1 € Ok, 71, € O be uniformizers.

e We call the ramification index of L/K the unique natural number e :=
e(L/K) > 1 such that g - O = (71.)°.

o We call the residue degree f := f(L/K) of L/K the degree of the (finite)
field extension k := Ok [(7x) — ki := Or/(7L).

o We call L/ K unramified if f = n, and we call L/ K totally ramified if e = n.
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Using Lemma [1.7] it is not difficult to see that n = e - f. An extension L/K of
degree n is totally ramified if and only if L = K[X]/(g(X)) for some polynomial
9(X) € Og[X],

which is Eisenstein, i.e., vx(g(0)) = 1 and g(X) = X" mod mg. In this case,
O, = Ok|ny] for each uniformizer 77, € L. Indeed, we leave it as an exercise that
for an Eisenstein polynomial g(X) € Ox[X] the ring L = K[X]/(g(X)) is a field,
whose valuation subring Oy, is given by O [X]/(g(X)). Conversely, assume L/K
is totally ramified of degree n and m;, € L a uniformizer. Let

1
Vi L — =ZU{cc}
n
be the unique extension of the normalized valuation v = v on K. Then

L=vwy(rp) =ep gV (nr) = nv/'(71) = v(Np k(L))

which implies that the constant coefficient of the minimal polynomial g(X) €
Ok[X] of 71, equals m up to a unit in Ok. As L/K is totally ramified, all other
coefficients are divisible by 7. The inclusion Ok |[rr] € Or, must then be an equality
as the residue fields of both local rings agree and both contain 7y,. A reference for
these facts is [Tia, Section 9.1.].

The unramified extensions are classified by finite extensions of the residue field.

Proposition 1.10. Let K be a local field with residue field k = Ok /mg. Then the
functor
{L finite, unramified extension of K} — {l finite extension of k}
L+ kr :=Op/myg
is an equivalence of categories.

Proof. We provide a short sketch of proof, more details can be found in [T1al, Section
9.2.]. Each finite unramified extension L/K is separable, i.e., of the form

L= K[X]/(9(X))

for some separable polynomial g(X) € K[X], which we may assume to be monic
and lie in Og[X]. Argueing a bit more carefully, we can arrange that

kr = k[X]/(g(X)),

where g(X) € k[X] denotes the reduction of g(X). Note that g(X) is then irre-
ducible and thus automatically separable as k is a finite field. For any finite field
extension L’ of K we then have to see that the map

Homg (L, L")
= Homg (K[X]/(9(X)), L)
=o€ Op | g(a) =0}
—{B € k' | g(B) =0}
%JHOI’Ilk(k’L, kL’)
is bijective. But this follows from Hensel’s lemma Lemma [1.6| applied to L’. This
finishes the proof of fully faithfulness. Essential surjectivity then follows by lifting

the minimal polynomial of a generator of a finite (separable) extension [ of k to a
monic polynomial g(X) € Ok [X] and setting L = K[X]/(g9(X)). O
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Exercise 1.11. Let (K,v) be a complete, discretely valued field, and let O =
{z € K | v(z) > 0} be its ring of integers, mxg C Ok the maximal ideal, and
k = Ok /mg the residue field. Let 7 € Ok be a uniformizer.

(1) Let S C Ok be a system of representatives for the residue classes in £, i.e.,
the map Ok — k restricts to a bijection S = k. Prove that

HS = Ok, (an)n — ian -
N n=0

is a well-defined homeomorphism, when the LHS is equipped with the prod-
uct topology.
(2) Assume that char(k) = p > 0 and that k& is perfect. Then there exists a
unique multiplicative map
[—] : k — Ok,
such that A = [A] mod (7) for all A € K.
Hint: Try [\] = lim (AYP"P0Y with XVP™a Lift of XV/P".
n—oo
(3) Assume that char K = p > 0 and that k is perfect. Prove that
K = k((r)).

1.3. The maximal abelian extension of a local field. Fix a prime p. Let K
be a local field (with residual characteristic p) and fix a separable closure K of K.
In this section, we want to analyze the maximal abelian extension
K = U LCK
LCK, L/K finite abelian

and see what Lubin-Tate theory can tell us about it.

Let k = O /mg be the residue field of K. Recall that for each m > 1 the
(finite) field k = F, has a unique extension k,, of degree m (up to isomorphism).
By Proposition [1.10] we obtain that for each m > 1 the local field K has a unique
unramified extension

K
of degree m. From Proposition [I.10] we can conclude that
Gal(K™ /K) 2 Gal(kn, /k) 2 FrobZ/™,
where
Frobg: kpmy — kpy, ©— 24
is the g-Frobenius of k,,, which is known to generate Gal(k,,/k). Set
K™= | J K CR,
m>1

which is the maximal unramified extension of K.
We can explicitly describe K™'. Namely, let k be an algebraic closure of k. Then

E= {J kun®),
(N,p)=1

where we set for any ring R
pn(R):={y e R|y" =1}



8 JOHANNES ANSCHUTZ

as the group of N-roots of unity in R. We can conclude that

K= | Kun(E)).

(N,p)=1
Clearly, each K is abelian and thus
Kb C Kab'

On Galois groups we therefore obtain an exact sequence
0 — Gal(K**/K™) — Gal(K*/K) — Gal(K™/K) — 0,
where

Gal(K™/K) = lim Gal(K,,/K) = lim Z/m =: Z.
m>1 m>1
Because Z is a free profinite group it follows that we can pick a (non-canonical)
splitting
s: Gal(K™/K) — Gal(K**/K).
Therefore we can write
Kab — Knr, Ks

with K the fixed field of the (closed) subgroup s(Gal(K™/K)) C Gal(K*"/K).
Note that K is necessarily totally ramified as K = K, N K". Before we try

to describe K, let us pause and analyze the case K = Q, assuming the local
Kronecker-Weber theorem Theorem Then

Q@ = Qp(oo),
while

Q= J Q).

(N,p)=1
This suggest to look at the “missing part”
Qp(pp=) = U Qp(1pn)

n>1

as ng = Qp(pp=)Q}" (we leave it as an exercise to check that Qp(pp~) = K; for
a suitable section s).
In this case, there exists a canonical isomorphism

Gal(@p(:“p"")/@p) = @Gal(@p(/‘p"v@p) = @(Z/pn)x = Z;;(-

In particular, there exists a non-canonical isomorphism
Gal(Q2*/Q,) = Z x L.
Local class field theory asserts that such an isomorphism exists for an arbitrary

local field K.

Theorem 1.12. Let K be a local field. Then the Galois group of K* over K is
(non-canonically) isomorphic to

0% x Z,
where Ok C K denotes the ring of integers. In fact, there exists a canonical mor-
phism K* — Gal(K?"/K), which identifies the target with the profinite completion
of K* 27 x OF.
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Let us elaborate a bit more on the canonical isomorphism
Gal(Q, (1) /Qy) = T
For this, let us fix some n > 1 and consider the polynomial
Xr' -1
and its factorization
XP' =1 = 0y (X)Ppr1(X) ... 0,y (X)P1(X)

into the cyclotomic polynomials (e.g., ®1(X) = X —1, ®,(X) = XP~ 1+ . .+ X +1).
We get the decomposition

(2) QP[X]/(XPTL — 1) = Qu(ppr) X Qplppn-1) x ... x Qp(pp) X Qp.
Clearly, given a € Z the map

pn

X — X

induces a homomorphism
pa: Qp[X]/(XP" —1) = Qu[X]/(XP" — 1)

of Q,-algebras, which only depends on the residue class of a modulo p”E| The
resulting map

v Z/p" — Endg, (Qp[X]/(XP" = 1)), a— ¢a

is a map of multiplicative monoids, i.e., @ap = @, © p, and we get a natural
homomorphism of groups

v (Zfp")* — Autg, (Qu[X]/(X" —1)).

But each automorphism of Q,[X]/(X?" — 1) has to respect the decomposition
(Equation ), and thus preserve each factor. In particular, we obtain the natural
morphism

(Z/pn) X — AUtQp (Qp (Mp” ))
which yields the canonical isomorphism

Z; = Gal(@p(ﬂp‘”)/@p)

by passing to the inverse limit over n.

We will see that the above situation generalizes to an arbitrary local field K if
we do the twist of rewriting everything in terms of Y := X — 1. The decomposition
(Equation (2))) then reads

Q Y]/ (1 + Y)pn —1) =2 Qpppr) X ... x Qp
according to the factorization
(1+Y)P" —1=pY + (Z)W o pYP T Y =0 (14 Y) - B(1+Y).
For a € Z the endomorphism ¢, becomes the morphism

Y= (1+Y)" -1

2Qp[X]/(XP" — 1) is isomorphic to the group algebra Qplppn] and @q is induced by the
multiplication by a on ppn.
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It is convenient to formulate the situation independently of n by passing to power
series. For this it is worth noting that the Z-action a — ¢, is actually defined over
Z,, as for each a € Z the polynomial

1+Y)"—1

has coefficients in Z.
Let us set fora € Z and n > 1

Pan = s LY)/(L+Y P =1) > 2L+ V)" — 1),
with @ € Z/p™ the residue class of a. Then the diagram

Pa,n

LY/ (L +Y )" = 1) —=Z,[Y]/(1+Y)P" ~1)

l |

ZY]/(L+ Y - 1) Sz YA+ Y )P )

with vertical arrows being the canonical projections commutes for any a € Z and
n > 1.

Lemma 1.13. The natural projections constitute an isomorphism
Zp([Y]] = Im Z,[Y]/(1+Y)" —1)
n

Proof. We first need to construct the morphism

Zy[[Y]] = Im Z,[Y]/ (1 +Y)"" —1).

For m,n > 0 the element Y € Z/p™[V]/((1 + Y)P" — 1) is nilpotent because
(14+Y)" —1=Y"" mod (p).

Therefore the canonical morphism Z,[Y] — Z/p™[Y]/((1 + Y)?" — 1) extends
uniquely to a morphism

Zy[lY]] = Z/p"[Y]/(1+ Y )" ~1)

taking the limit over m,n yields the desired morphism, and this morphism is easily
seen to be injective and continuous, when Z,[[Y]] = [[Z, is equipped with the
N

product topology. For each n > 1 the morphism
n—1
Lp[[Y]] = Z,[Y]/(L+ YY) = 1)
is surjective. By compactness of Z,[[Y]] this implies surjectivity in the limit. This

finishes the proof. ([l

Let us note that the same statement is wrong when 7Z, is replaced by Q,, e.g.,
the ring

lim Q,[Y]/(1+Y)" —1)
is has Krull dimension 0. By Lemma we get an endomorphism (as a Z,-algebra)
Paco Lpl[Y]] = Zp[[Y]]-
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for each a € Z by taking the limit of the ¢, . This endomorphism is given by the
map

Pacot Lpl[Y]] = Zp[[Y]], YV = (14+Y)* —1:= Z (CD v
with _

) 7!

(a) ala—1)-(a—i+1)

We can do better. Namely, for each a € Z, and each 7 > 1 the binomial coefficient
(‘;) lies in Z,, because (‘;) is continuous in a, Z C Z,, is dense, Z, C Q,, is closed and
(l;) € 7 C Zy for b € Z. Hence, we get by the exact same formula an endomorphism
©a,00 Of Z,[[Y]] for each a € Z,.

The resulting map

t: Ly — Endg, (Zy[[Y]]), a = a0
satisfies again
Pa-b,co = Pa,c0 © Pb,co-

Now we arrived at a concise viewpoint on the field extension

Qp(ﬂp‘”)

of Qp and Lubin-Tate were able to generalize this viewpoint to all local fields.
Before going into their resuls, let us pause and summarize how the data of ¢ allows
to reconstruct for a given n > 1 the field extension

Qp (1pn)

of Q,. Namely, Q,(upn) is the largest field extension occuring in the decomposition
of

Qp @z, Zp[[Y]]/((p™))
into fields. Note the interplay of Q, and Z,: The Z,-algebra
Z,[Y)/ (1 +Y)" ~1)

is local with maximal ideal (p,Y’), and does in particular not decompose into a
product of fields. However, after tensoring with Q, it does!

For a general local field K Lubin-Tate constructed a similar datum, namely a
map

t: Og — Endo, (Ox[[Y]])

converting multiplication into composition. The map ¢ is not unique but depends
on two input data:

(1) a uniformizer 7 € K,
(2) a power series [7](Y) € Ok|[[Y]] satisfying

[7](Y) = 7Y mod (Y)?, [#](Y)=Y?mod (rk),
where ¢ := #k with k := Ok /mg the residue field of K.
For example, if K = Q,, 7 = p and
PY)=(1+Y)P —1=pY + <§>Y+...+pr_1+Yp.

In this case
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and in general we will have

Let us write

ba, ]
for ¢ if we want to point out the dependence of ¢ on 7 and [r]. Then tr - will be
uniquely determined by multiplicativity and the requirement

b [ (M) (V) = [7] (Y).
To ease notation, let us define
A= Ok,
and
Fri={f€A][Y]]| f=nY mod (Y)? f=Y?mod (n)}.
The construction of ¢ [} (and much more) will rest on the following beautiful
lemma of Lubin-Tate.

Lemma 1.14 ([LT65, Lemma 1]). Let f(Y),g(Y) € Fryn > 1 and let
L(Yi,....Yn) = D aiY;
i=1

be a linear form with ay,...,a, € A. Then there exists a unique power series

FY1,...,Y,) € A[[Y3,...,Y,]] such that
F(Y1,...,Y,) = L(Y1,...,Y,) mod (Y1,...,Y,)?%,
and
JEM, .. V) = F(g(Y1), ..., 9(Ya)).
For example, pick a € A, f = g = [r] and L(Y) = aY. Then the F provided by
Lemma will yield ¢ (r(a)!

Proof. The proof will be by inductively finding a power series F,.(Y1,...,Y,) €
Al[Y3,...,Y,]] satisfying

FE(YVi,.. Vo)) = F(g(Y2),...,g(¥a)) mod (Yi,...,Y,)".

For r = 1 we can take F,. = 0, and less trivially for » = 2 we can take F»(Y1,...,Y;,) =
L(Y1,...,Y,). Indeed,

f(Y)=7Y = g(Y) mod (Y)?,

which implies

FEa(YVi, ., Ya)) = 7(L(Yi,..., Vo)) = Fa(g(Y1),...g(Ya)) mod (Yi,....Y,)".
Now assume that F;. has been found for » > 2. Our solution F,.; must have the
form

Fr+1 =I +G,

with G, € (Y1,...,Y,)". We can calculate

f(Fa(Ye, ., V) = f(Fr(Ya, ..., Y)) + G (Y1, .., Y,) mod (Yy,...,Y,) !
because f € F,. For the similar reason g € F,. we get
Frp1(g(Y1), .., 9(Y) = Fr(g(Y1), ..., g(Y)+7" G (Y1, ..., Yy) mod (Y3,...,Y,) Tt
The equality

(3) f(FT-i-l(Yla' . ,Yn)) = Fr+1(g(Y1)7' e ’g(Yn)) mod (Ylv' . aYn)TJrl
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is therefore equivalent to
(7" —m)Gr(Y1,..., V) = f(F.(Ya,..., V)= F(9(Y1),...,9(Y,)) mod (Y7,...,Y;,) .

The element 7"~! — 1 € A is a unit (because A 7 lies in the Jacobson ideal of A),
and 7 € A is a non-zerodivisor on

Al[Y1, ..., Y/ (Y1, ..., V) T

Therefore, G, solving (Equation ) exists (and is then uniquely determined mod-
ulo (Y7,...,Y,) 1) if and only of

f(E(Y1,...,Yn)) = Fo(g(Ya),...,9(Y2)) € A[[Y, ..., Y]]/ (Y, ..., Vo) !
is divisible by 7. But
FE- (Y1, ..., ))—F-(9(Y1),...,g(Yn)) = (F-(Y1,..., Vo) —F.(Y,...,Y, 7)) =0 mod 7

because the map z — z? is an A-algebra homomorphism modulo 7. Having found
the F, we can set F' € A[[Y1,...,Y,]] as the unique power series satisfying

F=F,. mod (Y1,...,Y,)".
This finishes the proofﬂ (Il

Remark 1.15. Note that we only used the facts that A is m-complete and m-torsion
free, that 7 divides p and that the map x — 7 is the identity on A/mw. Moreover,
it works if we replace ¢ be some power ¢", h > 1..

Let us now fix f € F;, e.g.,
f=nY+Y?
is a perfectly valid choice. For each a € A Lemma[I.14]yields a uniquely determined

power series
[a] € A[Y]],

[a];(Y) = aY mod (Y)?

such that

and
folaly=la]fo f.
Here, we defined
goh(Y) :=g(h(Y)) € A[[Y]]
for two power series g, h € A[[Y]] with vanishing constant term. The uniqueness in
Lemma [T.14] and the equality

a(bY) = (ab)Y mod (Y)?
implies that

[ab]; = [a]f o [bly
for a,b € A. We can record this as the following corollary.

Corollary 1.16. For each uniformizer m € A and each f = [x| € Fr there exists
a unique multiplicative map

e jn: A= Enda(A[[Y]]), a = (Y = [a];(Y))
such that 1y (-1(m)(Y) = f(Y) and iy x1(a) = aY mod (Y)? for each a € A.

3These calculations are faciliated using the following general fact: Let S be any ring and
F(X) € S[X] a polynomial. If ¢ € S satisfies €2 = 0, then F(X +¢) = F(X) + ¢~ %F(X).
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For A=Z, m=pand f(Y)=pY + (})Y?+...+ Y? we, of course, recover our
previous ¢. Back in the general case, the quotient

AlY)/([="1(Y))

is a finite free A-module of rank ¢" (with basis 1,Y,..., Y9 ~1). Recall that K =
Frac(A). In complete analogy to (Equation ) we want to find a decomposition

(4) K/ (1Y) = K X Krt X oo % Ky X K
for a nested sequence (inside some fixed separable closure K of K)
KCKy  CKrnC ...
of abelian extensions K , with Galois group
Gal(K 0 /K) = (O /(7))
If f = [n] is a polynomial, then this means to factor the polynomial
[=)(Y)

into analogs of the cyclotomic polynomials. The isomorphism Gal(Ky ,/K) =
(O /(m)"™)* will be constructed in the same way as for K = Q,: The multiplicative
morphism

tex): Ok — Endg (K[[Y]]),a = (Y = [a];(Y))

induces for each n > 1 (because of the crucial identity [p]; o [a]; = [a]f o [p]!) a
morphism of groups
tn: O = Autg (K[[Y]]/([7]")),

and the resulting O j-action must preserve the decomposition (Equation ) which
yields the desired isomorphism

Gal(Krn/K) = (Ok/(m)")*.
using that
Og/1+ (m)" = (Ok/(m)")".
Setting
K7

)

yields then the desired description
K = K, K™,
There is however no reason to expect that
Kroo = K/ oo
for different uniformizer 7,7’ € K, and it is thus a bit surprising that the composite
Koo K™

will turn out to be independent of 7. Before handling this question (and also to
derive the decomposition (Equation (4))) we will make a short interlude on the
notion of a formal A-module, which is one of the central notions appearing in this
course.
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1.4. Formal groups and formal A-modules. Slightly lightening the notation of
Section [1.3] we let A denote a complete discrete valuation ring with finite residue
field k of characteristic p. We fix as before a uniformizer m € A, and set ¢ := k.
As before, define

Fr={f € A[[X]]| f(X)=7X mod (X)?, f(X)=X?mod (n)}.
The starting point for this subsection are the following nearly obvious corollaries
of Lemma [[.14

Lemma 1.17. For each f € Fr there exists a unique power series Fy(X,Y) €
A[[X,Y]] such that

Fi(X,Y)=X+Y mod (X,Y)?,
and

fFp(X,Y)) = Fr(£(X), f(Y)).
For each f,g € Fr and a € A there exists a unique power series [a]r,q,(X) € A[[X]]
such that

[a].¢(X) = aX mod (X)?,

and

f(lal5,9(X)) = lal,4(9(X)).

For brevity, we will write [a|f = [a]f,¢.
Proof. This is a direct consequence of Lemma In the first case, one considers
fLg=Ff LX) Y)=X+Y,

and in the second
fy9,L(X) =aX. a.

For example, if A=7Z, and f(Y)=(14+Y)? — 1, then
Fi(X,Y) =X +Y + XY.

Indeed,
fFp(X,Y))
=f(X+Y +XY)
=14+X+Y+XY)P -1
=(1+X)(1+Y))P -1
=1+ X)P(1+Y)P -1
while

Fr(f(X), f(Y))
=1+XP-14+04+Y)P-14+(1+X)P-1D((1+Y)P=1))
=14+X)P+(1+Y)P-24+4(1+X)PA1+Y)P-(14+Y)P-(1+X)P+1
=1+ X)P(1+Y)?-1.

In general, we can record the following properties of the F, [a]f,g.

Theorem 1.18 ([LT65, Theorem 1]). For f,g,h € Fr and a,b € A, the following
properties hold true:

(1) Ff(X’O) :Xva(O7Y) =Y,

(2) Fy(Fp(X)Y), Z) = Fy(X, Ff(Y, Z))

(3) Fr(X,Y) = Fp(Y, X),
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(4) Fy(lalyg(X),[alg(Y)) = [a],4(Fy(X,Y))
(5) [alf,q([blg,n(X)) = [ab] y,n(X

(6) [a+blrq(X)=Fyr(la]s,g(X), [b]1,4(X))
(7) 7y (X) = f(X), [1](X) = X.

Proof. All of these statements follow from Lemma and Lemma by the
same pattern (which was already used for the construction of ¢ in the previous
section): First check that both sides of an equation commute in the appropriate
sense with f, g or h, and then check the identity modulo degree 2, where they reduce
to the equalities

X+0=X,0+Y =Y,
X+Y)+Z=X+(Y+2),
X+Y=Y+X,

aX 4+ aY = aX + ay,
a(bX) = (ab) X,
(a+b)X =aX +bX,

X =7X,

1-X=X.

We leave the details as an exercise. O

Item (1} Item |2 imply that F is a so-called (one-dimensional) formal group law
over A, Item [3] implies that this formal group is commutative, while Item [4] im-
plies that [a]f, defines a homomorphism between the formal group laws Fy and
F,. Finally, Item [4] Item [5| Item @ Item 7| imply that a — [a]; defines a ring
homomorphism

A — Endpgra)(Fy),

where the RHS denotes the endomorphism ring of the formal group law Fy over A.
Let us now give the relevant general definitions.

Definition 1.19. Let R be any (commutative, unital) ring. Then a power series
F € R[[X,Y]] is called a (one-dimensional) formal group law if
(1) F(X,0) =X, F(0,Y) =Y. In particular, F(X,Y) = X +Y mod (X,Y )%
(2) F(X,F(Y,Z)) = F(F(X,Y), Z) € R[[X,Y, Z]].
(3) It is called commutative, if additionally the equality F(X,Y) = F(Y,X)
holds true.

Note that Item [2] is well-defined because F(X,Y) has no constant term. The
easiest example for a formal group law is the power series

Faa(X,Y) := X +Y,

which defines the so-called “additive” formal group law.
Let us check explicitly that these conditions hold for any ring R and the power
series

Fau(X,Y) =X +Y + XY
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from before (Fi,, is the so-called “multiplicative” formal group law). Indeed,
Item [T}, Item [3] are obvious and for Item [2] we can calculate

F(X,F(Y, 7))
=X+FY,2)+ X -F(Y,Z)
=X+Y+Z24+Y - 2)+ XY +Z+Y 2)
=(X+Y+X-V)+Z+(X+Y+X -Y)Z
—F(F(X,Y),Z).

We now define homomorphisms between formal group laws.

Definition 1.20. Let R be a ring and Fy, Fy € R[[X,Y]] two formal group laws.
A homomorphism
©Q: F—

is a power series ¢(X) € R[[X]] such that

(1) p(X) =0 mod (X)

(2) Fa(p(X),0(Y)) = p(F1(X,Y)) € R[X,Y]].

With this notion of homomorphisms we can consider the category
FGL(R)

of formal group laws over R. For example, ¢(X) = X defines the identity.

To enlighten the definition of a formal group law we now discuss a different
viewpoint on them. This viewpoint will help to clarify later how formal group laws
relate to (formal) schemes. The crucial point is to interpret rings of power series
functorially.

Let us fix a ring R and let

Algp

be the category of (commutative, unital) R-algebras (thus formally Algy is the
under category R/(Ring)). Let us equip R[[X]] with the (X)-adic topology, i.e.,
the unige topology with a basis of open neighborhoods of 0 given by {(X)"},>1,
which makes R[[X]] into a topological ring. For any R-algebra S € Algp we can
consider the set

Homets r(R[[X]], S)
of continuous R-algebra homomorphisms, where S is equipped with the discrete
topology. As {0} C S is open, for every continuous morphism ¢: R[[X]] — S there
must exist an n > 1 such that

p(X™) =0.
In particular, f(X) € S is nilpotent. For each element
s € Nil(S) := {x € S| s nilpotent }.
there exists conversely a unique continuous R-algebra homomorphism
p: R[[X]] = S
sening X to s. We obtain a natural isomorphism
Homes, g (R[[X]], —) = Nil(—)
of functors Algp — (Sets). More generally, we get
Homes, g (R[[ X1, ..., Xy]], —) 2 Nil"(—)
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for any n > 1, when R[[X1,...,X,]] is equipped with the (X3, ..., X,)-adic topol-

ogy.
Now consider a formal group law F' € R[[X,Y]] over a ring R. Pulling back a
continuous homomomorphism

v: R[X,Y]] = S
along the continuous map
R[[X]] = R[[X,Y]], X —» F(X,Y)
we get a natural transformation
nt: Nil x Nil — Nil
(this only uses the F' has no constant term). The definition of a formal group law
implies now that for each R-algebra S the resulting operation
nE : Nil(S) x Nil(S) — Nil(S)
turns Ail(S) into a group with unit 0 € Nil(S)!
For S € Alg and x,y € Nil(S) let us set
F(x,y) € Nil(S).

z+ry:=n"((z,y))
From Definition [[.19]it is clear that

O+ry=1y,
r+rp0=x
and
(z+ry)+rz=2+F (y+r 2)
for any z,y,z € Nil(S). In order to obtain that Ail(S) is really a group we have
to prove that inverses exists. This is provided by the next lemma.

Lemma 1.21. Let R be a ring and F € R[[X,Y]] be a formal group law. Then
there exists a unique power series ¢ € R[[X]] such that

F(p(X), X) =0.

Having ¢, it is clear that
p@)+rx=0
for any S € Algp,x € Nil(S), which is sufficient to see that each element in Nil(S)
has an inverse with respect to +p.

Proof. We construct inductively a power series ¢,, € R[[X]] such that
(5) F(on(X),X)) =0 mod X™.
Clearly, we can set po(X) = —X. Now given ¢, (X) satisfying (Equation (5])) write

F(pn(X),X) =7 X" mod X"
for some r € R. We can deduce that for s € R arbitrary

F(on(X) +sX™, X)

=F(pn(X),X) + sX" mod X"

=rX" +sX" mod X"*!
because F'(X,Y) =X +Y + higher terms. Thus we can set

fasr (X) = pul(X) = X",
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This is moreover the unique possible choice, and the proof is finished. O
We call the functor
Gr: Algg — (Grp), S — Nil(S), (=) +r ()

the “formal group associated to the formal group law F”. It is clear that for each
S € Algp the group Gr(S) is commutative if F' is commutative (in fact, only if).
We will see later that if conversely

G: Algp — (Grp)
is a functor, such that on underlying set-valued functors G = Al and

0: % — G =Nil
is the unit for this group structure, then G = Gp for a uniquely determined formal
group law F € R[[X,Y]].
Example 1.22. The functor

G : Algg — (Ab), S— S*
is called the “multiplicative group” over R. For each S € Algy and each z € Nil(S)
we get 1+ € S*. This defines a natural inclusion(=monomorphism)
Nil - Gy, z € Nil(S) = 1+x2e€ XX,
which endows the functor AVl with a group structure. From the equation
1+2)1+y)=14+z+y+zy

we can see that this group structure is induced by the multiplicative formal group
law
Fru(X,)Y)=X+Y + XY.

This can be reinterpreted as saying that the formal multiplicative group

~

Gm = Gqul (X, Y)

was obtained from the (algebraic) multiplicative group G,, by “completing at the
identity section 1 € G,,”. Similarly, the formal additive group

o~

Ga = Gruaxy)
with Foqa(X,Y) = X +Y arises from the (algebraic) additive group
Gq: Algg — (Ab), S — S
by completing at the zero-sectio 0 € G,.

Given any endomorphism ¢: F; — F5 of formal group laws, then
n?: G, = Gr,, T € G, (S) = Nil(S) — p(x) € Nil(S) = Gp,
defines a natural transformation of functors Algp — (Ab) (and conversely any
morphism G, — G, is of this form as we will discuss later).

Exercise 1.23. Let R be a ring, and for ¢ € Rset F.(X,Y):=X +Y + cXY.

(1) Show that F.(X,Y) := X +Y + cXY is a formal group law over R.
(2) Assume that R is reduced. Show that each formal group law F', which is a
polynomial, is equal to F, for some ¢ € R.
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(3) Assume that R is a Q-algebra. Show that the “additive formal group law”
Fy(X,Y) = X +Y and the “multiplicative formal group law” F;(X,Y) =
X +Y 4+ XY are isomorphic.

Let us turn back to our case of interest, i.e., let A be a complete discretely
valued with finite residue field k of characteristic p with ¢ elements, and let us fix
a uniformizer m € A. Recall that

Fre={f € A[X]] | f(X)=7X mod (X)?, f(X)=X?mod (m)},
and that for any f € F, we constructed in Lemma [[.17] a formal group law
Fy(X,Y) € A[[X,Y]].

The formal group law Fy(X,Y) is special as it is equipped with many endomor-
phisms, namely the
[al; € A[[X]]
for any a € A (“F¢(X,Y) has formal complex multiplication by A”).
We abstract this data to a general definition for any A-algebra R.

Definition 1.24. A formal A—moduleﬂ over R is a formal group law F over R
together with a ring homomorphism

1 A— EndFGL(R) (F)
such that for each a € A we have
t(a) =a- X mod (X)?,
We will usually write [a] instead of t(a).
Clearly, formal A-modules are functorial in R in the following sense. If a: R — S
is a morphism of A-algebras and F' a formal A-module over R, then by applying «
to the coefficients of F' and the ¢(a),a € A, we obtain a formal A-module o, F over

S. Instead of a.. F' we will also write F® S occasionally.
Let us note that for a formal A-module F' over R and any S € Algy the abelian

group
(Nl(S), (=) +F (-))
is naturally an A-module via
a-rx:=[a)(z).

This viewpoint makes it clear how we should define morphisms of formal A-modules.
Namely, a morphism f: F' — G between formal A-modules over R is a power series
f(X) € R[[X]], which is a morphism of the underlying formal group laws, such that

f(lalp(X)) = lala(f(X))
for each a € A. Similarly to the case of formal group laws we get the category
FGL4(R) of formal A-modules over Spec(R) which is naturally enriched in A-
modules by pointwise taking the addition (for the formal group law)/scalar mul-
tiplication of homomorphisms. For the moment, the case R = A is the most
important one for us. By Theorem we know that for f,g € F, the formal
group laws Fy and Fy are isomorphic via the homomorphism

(Ugp: Fr — Fy

40r better, formal A-module law.
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from Lemma [1.17) (with inverse [1]7,4). We will now continue our discussion of local
class field theory.

1.5. Back to local class field theory. We continue to use the usual notation
A, m, q,k, F, from before.

Let us consider again the case A = Z,, f(X) =pX + (!) X2+ ...+ pXP~1 4+ XP
with associated formal group law

Fr(X,)Y)=X+Y + XY.
Fix an algebraic closure @p of Qp. For n > 1 the field

Qp(pp)
arises by adjoining the p™-torsion points
Hpn (@p)
of the @p—valued points
G (@p) = @;

of the algebraic multiplicative group G,,. For more general A there does not exist
an analog of G,,, and so let us try to reconsider the situation with G,, by @m

There is a different reason why we should switch to @m. Let G, @m: Algzp —
(ADb) be the algebraic resp. formal multiplicative group over Z,. Then

End(G,,) 2 Z,

while

~

End(G,,) = Z,,

where the End(—) refers to natural transformations of functors Alg; — (Ab), cf.
Exercise [L.35

The immediate problem is that naively

if we consider @p a “discrete” Zp-algebra. There are two ways to fix this problem.
In the first (which is the one used in [LT65]) one uses that the p-adic valuation on
Q, extends uniquely to a valution

v:Q, - QU {oc}
(using Proposition , and that this yields an associated (non-discrete) metric
topology on Q,. If z € Q, satisfies v(x) > 0, then for a power series ¢(z) =
> a; X € Z,[[X]] the series
i>0
o(z) = Z a;z’
i>0
converges, even if @p is not complete. Namely, = lies in some finite extension L of
Q,, and then ¢(z) converges in L as L is complete by Proposition Argueing
similarly for Fy(X,Y") we can therefore define a group structure (even a Z,-module
structure) on

Gn(@,) :={z€Q, | v(z) >0}
using F, and the p™-torsion points in this group define the field Qp,(pn ).
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In the second approach one just passes to the completion
C, = @p
of @p, and defines
Gm(Cp) =me, == {z €C, | v(z) > 0}.

By completeness of C, the relevant power series converge and yield a Z,-module
structure on G,,(C,). Note that although

Gm(Qy) C Gm(Cy)
the subgroups of p™-torsion points agree for each n > 1 as torsion points are alge-

braic over Q,.
Let us generalize this to arbitrary A. Fix a separable closure

K

of K, and w € A, f € F, as before. For any algebraic extension L of K we set

Gr,(L) :=mp :={x € L|v(x) >0},
where v: L — QU oo is the unique extension of the valuation on K. The formal
group law F; and its endomorphisms [a]; for a € A define a functorial A-module
structure on

Gr, (L) :=mp :={x € L|v(x) >0}
In particular, if L/K is Galois the Galois action of Gal(L/K) on

gFf (L)
is A-linear.
We can now (finally) define the Lubin-Tate extensions of K.

Definition 1.25. For n > 1 we define
Ag = ker(Gp, (K) =% gp (K) C K
as the " -torsion in the A-module Gp,(K), and
Kren=K(A\fn).

If f,g € Fx, then the (A-linear) isomorphism [1]f 4: Fy = Fy from Theorem

restricts to an isomorphism
A fg: Agn = A, @ [1]54(2).
Therefore even if the subset Ay, C K depends on f, the resulting field extension
Krn

does not. The natural action of Gal(K/K) on Gr, (K) preserves Ay ,, and therefore

the field K, is Galois over K. As we can take f(X) = 7 X + X, we see that K ,,
is very concretely the splitting field of the polynomial

(7" (X) = F(S( .. (f(X)..) € K[X]

n—fold composition

We want to analyze the field K, further, and in particular prove that the
natural morphism

Gal(Ky n/K) — Auta(Agp)
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and
(A7) — AutA(Afm)
are isomorphisms (proving that K, ,/K is abelian with Galois group (A/7™)*).

Theorem 1.26 ([LT65, Theorem 2)). Let A,m, f € Fr as before, and set M :=
Gr, (K). The following hold true:

(1) The A-module M is divisible, i.e., for each a € A\ {0} the multiplication
M % M is surjective.

(2) For each n > 1 there exists an isomorphism Ay, = M[n"] = A/x".
(3) The A-module Ay := |J Ay, = M[r>] is isomorphic to K/A.
n>0
(4) For o € Gal(K/K) there exists a unique v, € AX such that
o(A) = x5 - A= [25](N)
for all X € Ay.

Proof. As the formal A-modules F, F, for different choice f, g € F, are all isomor-
phic (via [1]f4), we may assume that

f(X)=7nX+ X1.
For any z € M C K the zeros of the polynomial
f(X)—z=X"4+71X — 2z
lie in m% as f(X) = X? mod my. Moreover, f(X) is separable as its derivative
F(X)=q¢X" 4
does not have a zero in mz because v(q) > v(7). Clearly,
Apr={ze M| f(z) =0}
because f(X) = [r];. In particular,
fAr1 =q=tk.
As A-action on Ay, factors over A/m = k, this implies
A1 =k

as A-modules. Lemma below implies Item [2 and Ttem [3| As the Gal(K/K)-
action on Ay = M[r>°] is A-linear the existence of z, for o € Gal(K/K) follows
from another application of Lemma [[.27} This finishes the proof. O

Lemma 1.27. Let N be a divisible A-module such that N[r]| = A/m. Then
N[r>®] = K/A,
and in particular,
A 2 Endy (N[7)).

Proof. By the assumption N|[r] & A/7 and the structure theory of finitely gener-
ated A-modules each finitely generated A-submodule My C N[7°°] must be isomor-
phic to A/7™ for some n > 0. The multiplication 7: N — N induces (by divisibility
of N) a short exact sequence

0— Nir| - My — My —0
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for a finitely generated A-submodule M; C N[x*°]. We can conclude that M; =
A/m" T Continuing we find that

N[r®| 2 limr "A/A = K/A.
For the last statement note that
Homy (K/A,K/A)
%HomA(lig 7 "A/A K/A)

n>0
= £l_ Homy(r "A/A, K/A)
n>0
> lim Homy (n " A/A,n""AJA)
= Ll_ A"
n>0
~A
by completeness of A. |

We obtain as a consequence a description of Gal(K ,/K).

Lemma 1.28. Forn > 1 we have
(1) [Krn: K] =(q— g™t
(2) Krn is totally ramified over K
(3) The map o — x, induces an isomorphism
Gal(Kyn/K) = A /(1 +7"A).
Proof. Assume as in Theorem that f(X) = X%+ 7X. Write

X)) =G (X)) =X+ +7"X
for the n-fold composition of f. Note that by definition we have
Apn=A{z € Gr,(K) | f"(z) =0}.

We can factor f*(X) (similarly to factoring X?" — 1 into cyclotomic polynomials!)
as

P (X)P(X )1 P1(X)Po(X)
with ®o(X) = X and

F1(X) f(F1(X)) i—1 -1

(X)) == == =(f"H(X))?
()= 4o = L = )

for i > 1. We see that ®;(X) is an Eisenstein polynomial, therefore irreducible, and
of degree (¢ — 1)¢'~!. As K., is the splitting field of ®;(X) for each 4, it follows
that

(Kon : K] = (q— 1)qn_1
and that K, is totally ramified over K. The natural morphism
Gal(K;,/K) = Auta(Ag,) =2 A*/(1+7"A)
is injective as Ay, generates K ,. We can then conclude because
H(Gal(Ko i/ K)) = [Knn t K] = (= 1)g"™" = §(4% /(1 + 7" 4))
using Theorem [1.26 (]
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Passing to the colimit we therefore obtain the natural isomorphism
Gal(K,/K) =2 AX, 0+ x,.

for K = K(Ay) = U Krn. As K, is totally ramified over K by Lemma [1.28
n>0
we obtain an isomorphism

A* X 7.2 Gal(K, K™/ K).
Our next aim will be to prove that for each uniformizer = € A we have

Kab _ KﬂKnr.

Following [Gol81] we will deduce this from the theorem of Hasse-Arf.

1.6. Higher ramification groups. In order to prove that
Kab — K. KW

for a (non-archimedean) local field, we need at least one statement concerning all
abelian extensions of K. This statement will be the theorem of Hasse-Arf, cf.
Theorem [1.40, In order to state it, we need to introduce the higher ramification
groups of K, cf. [Ser13|, Chapter IV], which in the case of K, mimick the filtration

{0} C (1 +a"tA)/(1+7a"A) C...C (1+7A)/(1+7"A) C A*/(1+1"A)
on

A*/(1+7"A) = Gal(K, ,/K).

In the following, let A be any complete discrete valuation ring, that is we don’t

assume that the residue field k of A is finite. Let

K :=Frac(A),

and fix a uniformizer 7 € A. We still assume that k is perfect. This has the
consequence that for each finite extension L/K with ring of integers B = Oy, and
uniformizer 7y, the extension

kL = B/(TFL)
of k is separable, and therefore Proposition holds true as well.
We denote by
v: L —ZU{co}

the normalized valuation of L, i.e., vy (my) = 1. Assume in addition that L/K is
Galois (not necessarily abelian) and set

G := Gal(L/K).

Let Lo C L be the maximal subextension of L/K such that Lo/K is unramified.
By Proposition [1.10] we get a natural isomorphism

Gal(Lo/K) = Gal(kr /k),
and thus a short exact sequence
1= Ik —G— Gal(kp/k) — 1
with I,k = Gal(L/Lg) the so-called inertia subgroup of G. In other words,
Ik = ker(G — Aut(B/(7r))).
More generally, we can define the higher ramification subgroups G; C G, i > —1.
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Definition 1.29. For i > —1 we set
Gy = ker(G — Aut(B/(rp)™)).
In particular, the G; form a decreasing sequence of normal subgroups in G and

G_1 = G,GO :IL/K

As B = 1'&nB/(7rL)iJr1 by m-adic completeness of B, we get
i

nGi = {1},

ie., G; = {1} for i > —1. We call the ¢ > —1 such that G; # G;41 the “jumps” of
the filtration G;,7 > —1.
Let H C G be a subgroup with corresponding subfield
K' =15,
It is clear that for each ¢ > —1
H,=G;NH,

where the LHS denotes the ramification filtration of the Galois group H = Gal(L/K")
of the field extension L/K’.

For simplicity we may therefore assume that L/K is totally ramified, i.e, Ly = K
(or equivalently, Gy = G) by replacing K with Ly. Then

B = A[’ITL]
as follows from the fact that the minimal polynomial of 77, over K is Eisenstein.
Let us define the function
ic: G = ZsoU {0}, s—vp(s(my) — 7).
Then
iG(S)Z’i+1<:>SEGi

for s € G as follows easily from the definitions and the fact that B = A[rz]. In
particular, i is independent of the choice of 7y,. For a subgroup H C G we clearly
have iy = (ig)|H.

Let us now calculate the function i¢ (and thus the ramification filtration) for
the field K, ,, from Section @

Example 1.30. Assume that K, L = K, ,, f are as in Section To compute
the ramification filtration on

G=Gal(K,,/K)=2A*/(1+7"A), s+

we first have to find a suitable uniformizer 7, € L. From the proof of Lemma [1.28
we can take as mp any m"-torsion point in Ay, of “exact order n”, ie., m €
A \Afn_1. As the choice of f does not matter, we may take f(X) = X9+7X in
the following. We will see later that in general G; C G = Gj is the unique p-Sylow
subgroup of G. This implies that

G2 (1+7A)/(1+7"A).
Let s € G; and write z;, = 1 + an* A with a € AX. Then

s(rr) = [z (m) = [(7L) +r, lan](7L) = 7L+, [an"](7L),
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and using Fy(X,Y) = X +Y + higher terms we have to find
ic(s) = vi([ar'](mL)).
As [a](x) = ax + higher terms in z with a € A, we get
vi(lar')(7r)) = vo([7'](71)).
We claim that
(6) ve([7')(mr)) = ¢'
for 1 <i < n. Indeed, for i = 1 (which forces n > 2) we have
[wl(ms) = % + 7
and v () = (¢—1)¢" ' +1 > g =vr(a}) by Lemma For ¢ > 1 we compute
[7)(me) = ([7"~1(7e)? + wlr' = (mr)
and by induction
vi(r[r Y (rn)) = (g — 1Dg" ' +q",
which is strictly greater than
¢ = vi ([ (r2)))
because n > i. This proves (Equation (6))). We get that for any s € Gy
ia(s)=¢'

ifrg € (1+7A)\ (1+ 7L A). We therefore obtain that the jumps of the filtration
G;,i > 0, are exactly the values

O:q()*l?ql71aq2717"'7qn7171

and that the quotient G;/G,41 at a jump j is k* = A*/(1 +7A) if j = 0 or
k(14 7%)/(1+7"LA)if j = ¢ —1 > 1. For completeness let us mention that

ig(S) =1
if s € Go \ Gy because if £, = a+ br with a € A*\ 1+ 7A, b€ A, then
vi(s(np) —7p) =ve((a—)mp) = 1.
In general, the function ig(s) is constant on the subset G; \ G;+1. Now assume
that H C G is a normal subgroup, or equivalently that
K :=1"

is Galois over K.
We want to relate i¢ and ig,y (and thus the ramification filtration of G with
that of G/H).

Lemma 1.31 ([Serl3l Chapter 3, Proposition 3]). For every s = sH € G/H we
have

i m(s) = — > ialt),

e
L/K’ tesH

where ey, /i = [L : K'| = §H is the ramification index of L/K'.
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Proof. We may assume that s # 1 € G/H as otherwise both sides equal co. Let
mr € K’ be a uniformizer. Then
ig/H(g) = I/K/(S(’/TK/) — 7TK/) = ez/lK,l/L(S(ﬂ'K/) — 7TK/),

while
> ia(t) =Y vi(st(ry) — m) = v (][ (st(rr) — 1))
tesH teH teH
Hence it suffices to see that
a:=s(mg) — T

and
b= H (st(mr) —mr)
teH
generate the same ideal in B = Op. Let

f(X) € O/ [X]

be the minimal polynomial of 7w, over K’, and let s(f) € B[X] be the polynomial
obtained from f(X) by applying s to the coefficients of f. The element a = s(7g/)—
TK! divides

s(f)—f
as each coefficient of f can be written as a polynomial (with A-coefficents) in mx-

and s fixes each element in A. This in turn implies that a divides s(f)(7)—f(7L) =
s(f)(mr) = £b because

F(X) = T[(X = t(mr)).
teH
Because B = A[rp] we can write mxs = g(mr) for some polynomial g(X) € A[X].
The polynomial g(X) — mxs € Ok is divisible by f because it has 7, as a root.
Hence, we can write

9(X) — i = f(X)h(X)
for some h(X) € Ok/[X]. We get

=s(mg/) — TK
=s(f)(X)s(h)(X) + s(g9)(X) — F(X)h(X) — g(X)
=s()(X)s(h)(X) — fF(X)h(X)

because g has coefficients in A. Substituting 7 for X we obtain

a=s(f)(rr)s(h)(rr) = +bs(h)(mL)
as desired. (]
From Lemma@ it is not difficult to conclude that if H = G;,j > —1, then
=G {0), 1
Indeed, if ¢ < j we can calculate for s € G; \ G;41

LS ig(st) = ia(s)

e
L/K ycn

ig/u(3) =
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because i is constant on the coset sH C G;\Giy1. On the other hand i, (5) = oo
ifseG;=H. As
ig/a(o) >2i+1eo0¢c(G/H);
we can conclude.
Before describing the filtration (G/H);,i > —1, for more general H, we describe
the quotients
Gz‘/Gz’-&-la i > 0.

Lemma 1.32. Let s € G = Gy. Then

L

Proof. This follows directly from the definitions. O

se€G&ig(s)=vLv(np)—7) > i+1s =1 mod (7p)".

For 7 > 0 set . .
U; . =1+7'B,
which is a subgroup of BX = U?. By m.-adic completeness of B we get
UL/UL = (B/m1)*, BX =lmUY /U,

For each ¢ > 1 we have an isomorphism
o . z—1
Ui /UM = B/rp, o mod Uptt v — mod (7))

of additive groups.
We get the following interesting consequence.

Corollary 1.33. For i > 0 the map (of sets)

TL

G = UL, s+

induces an injective homomorphism
0:: Gi/Gip1 — UL U,
which is independent of the choice of 7.

Proof. By Lemma the map is well-defined. We first prove independence of 7,
of the map
Gi = ULJUM, s+ s(me).
L
For this let 7' = un;, € B be another uniformizer with v € B*. Then
s(u) = v mod (r*T1h)
for s € G;. This implies # = 1 mod (7**!) and hence

s(r) _ s(w)s(ms) _ s(rn) i
4 u Ty, o Ty, Lo

™

Now we can prove additivity of G; — UE/UEH. If s,t € Gy, then (7)) € B is a
uniformizer, and hence by the proven independence

st(me) _ s(t(me)) tme) _ s(mo) Ume) o i
Tr, t(’iTL) L B T, Tr, L

as desired. O
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Corollary [T-:33] has interesting consequence. Namely,

(1) The quotient Go/G1 is cyclic of order prime to the characteristic of k be-
cause this holds for each finite subgroup of k* = U?/U}.

(2) If char(k) = 0, then for each ¢ > 1 we must have G;/G;11 = {1} as
k= U; /U = B/mr, has no non-trivial finite subgroups.

(3) If char(k) = p > 0, then for ¢ > 1 the group G;/G;41 must be a finite
direct sum of copies of I, as it embeds into the additive subgroup k. In
particular, G is the unique p-Sylow subgroup of Gy.

(4) The group Gy is solvable, which combined with the fact that unramified
extensions of local fields are abelian, implies that if K is a local field, and
L/K finite Galois, then Gal(L/K) is solvable.

Let as before K be a complete discretely valued field (with perfect residue field
k), and L/K a finite Galois extension (not necessarily totally ramified). Then
G1 = {1} if and only of e,/ is prime to the characteristic of k. Such an extension
is called tamely ramified. We give the following exercise describing these.

Exercise 1.34. Assume that L/K is tamely ramifed with e = [L : K] and that
the residue field of K is algebraically closed. Then
L = K(/7)
for a suitable uniformizer 7 € K.
In particular, if p = char(k) (possibly p = 0)
U K™K (¥/7)
nx1, pin

is the maximal tamely ramified extension of K. This implies that for K = k((¢))
with k algebraically closed and of characteristic 0, the field

U k(™)
n>1

is algebraically closed.
After having described the G;/G; 1 our next task is to describe the ramification
filtration on G/H for a general subgroup H C G = Gal(L/K).

Exercise 1.35. (1) Prove the Yoneda lemma: Let C be a category and for
¢ € C let he(—) := Home(—,c) be its contravariant Hom-functor. Let
F: C°" — (Sets) be a functor. Then there exists a natural bijection

HomFun(COP,(Sets))(hc,F) = F(C)
(2) Let R be a ring. Show that the natural transformations n: Nil — Nl are
in natural bijection with the set {f(X) € R[[X]] | f(0) € Nil(R)}.
(3) Let p be a prime and let
G, Gt (Algg) — (Sets)

be the algebraic and formal multiplicative group over Z,. Then Endz(G,,) =

~

Z, while Endz(G,,) = Z,,.
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1.7. The theorems of Herbrand and Hasse-Arf. As in the previous section
we let ' = Frac(A) be a complete discretely valued field with perfect residue
field k, and L/K a finite Galois extension (not necessarily totally ramified) with
G := Gal(L/K) equipped with its higher ramification filtration G;, i > —1, and
associated function ig.

We also fix a normal subgroup H C G with corresponding subfield

K =L%CL,

which is Galois over K.
Roughly, Herbrand’s theorem implies that for each ¢ > —1 the ramification
subgroup

(G/H);
for G/H = Gal(K'/K) is of the form
G, H/H

for some j > —1, which might be different from i. In order to state the result
precisely we set

Gu = Gi
for u € R,u > —1, where ¢ > u is as the smallest integer.
Now set
r 1
= pr/K(u) = O/[G():Gt]dt

for u > —1. Here, we defined
[Go : G_l] = [G_ll Go]

Note that ¢(u) = u for =1 < u <0.
Let us directly give an example by computing the case K localand L = K ,,, n >
1, from Section [1.5

Example 1.36. In Example [[.30] we computed the higher ramification groups for
the extension K, of a local field K with uniformizer 7 € K. The function

1
Rs_1 =R, t— m
is piecewise constant by definition. From here, one obtains that
p:Rs_; = R,
is the unique, concave polygon starting at (—1, —1) with slopes

1,1/(¢=1),1/(g—=1)g,-..,1/(g = 1)g" ™"
and break points 0,¢g —1,¢2 —1,...,¢" — 1.

In general,

1 .
p(u) = ﬁ?o(gl +92+.. + (u—14)git1)
for uw € R>g,% € Z, such that i <u <i+1, and g; := §G;.
We can now state Herbrand’s theorem precisely.
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Theorem 1.37 (Herbrand). For any v > —1 we have
(G/H), =G,H/H

if v=r/Kk(u).

Before proving Herbrand’s theorem let us introduce the upper numbering of the
higher filtration groups.

Lemma 1.38. The function ¢, : R>_1 — R>_1 is a piecewise linear, concave,
increasing homeomorphism with ¢(0) = 0.
1

For u € R>_; \ Z the function ¢ is differentiable at u with derivative GGl

For u € Z> the left derivative of ¢ is m while its right derivative is
Let

1
[Go:Gu1]”

V=9 = (pr/r) " Rs_g = R>_y

be the inverse of .
Via 1 we can define ramification groups in the upper numbering of G via

G = Gy
for v € R>_;. Theorem can then nicely be reformulated as saying that
(G/H)=G"H/H
for all v € R>_1. Indeed, we will prove this in Lemma

Example 1.39. Let us continue Example [1.30, Example and compute the
ramification filtration on G = Gal(K ,/K) in the upper numbering. The jumps
of GY = Gy (), v > —1, are precisely the values

p(u)
for u > —1 a jump for the filtration G,,. We computed that these are precisely
0,g—1,>—1,...,¢" 1 —1
with
Go=A"/1+7"A) DG =Gy_1 =1+ 7A)/(1+7"A)
and for 1 <i<n

Gy = (1+7"4)/(1+7"A).
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Now we calculate for 1 <i<n

e(¢" —1)
q'—1

1
- 4
[Go: Gu ™"

I
o

g’ -1

¢i=1-1

i

I
.
I
LN

<.

v
(q—1)g7~t

(¢ —¢'™")

Il Il
S ()
Il o
[ —

—

Hence, GV,v > —1, has its jumps precisely at
0,1,2,....,n—1.
and
vi)=¢ —1
for 0 <7 < n. For v > n — 1 we have
Y() = (- 1g"Hv—n+1)+¢"7" -1,
i.e., the final slope of ¥ is (¢ — 1)¢"~!.

In particular, we see that the jumps in the upper numbering filtration on Gal(Kx ,,/K)
are integers (rather than rationals). The theorem of Hasse-Arf implies that this is
the case for all abelian extensions of a complete discretely valued field K.

Theorem 1.40 (Hasse-Arf). Let L/K be an abelian extension. Then the jumps
for the upper ramification filtration G¥,v € R>_1, on G := Gal(L/K) lie in Z.

Here a jump in the filtration G, v € R>_; is a real number v € R>_; such that
GY # GVte

for all € > 0.

Note that by Theorem[1.37]the local Kronecker-Weber theorem, cf. Theorem|[1.46]
and Example imply Theorem if K is a (non-archimedean) local field.

We will present a proof of Theorem in Section Now we turn to the
proof of Theorem [T.37}

We have to establish some lemmata. We continue to write g; = #G; for ¢ > 0.

Lemma 1.41. For u > 0 we have

o/ (u) =0(u) = gio Z(min{ig(s),u +1}-1)
seG

with ic(s) = vi(s(mL) — 71) the function discussed in Section [1.6,
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Proof. For s € G the function min{ig(s), u+1} is concave, continuous and piecewise
linear. This implies the same for #. Moreover,

O(u) = 0= p(u).
Hence, it suffices to see that for ¢ < u < i+ 1 the derivatives of # and ¢ agree. For
¢ the derivative is 2+, For 6 the derivative is

9o
1 Z 1 = it

g0 SEG, ig(s)>i+2 90
as desired. 0

Lemma 1.42. For o = sH € G/H set
jlo) :=max{ig(t) | t € sH}.
Then
ig/u(0) —1=¢r/r(jo) —1).
Proof. We may assume that
jlo) =ig(s) :=m.
If t € H with ¢t € H,,,—1, then st € H,,_1 by construction of s. Thus ig(st) > m,
and hence ig(st) = m. For t € H\ H,,—1. we obtain
ic(st) = ic(t)

because for i < m — 1 we have st € H; if and only if ¢ € H;. Combining both cases
we obtain

ic(st) = min{ig(t), m}
for each t € H. By Lemma [I.31] we get

L > ig(st) = 1 > min{ig(st), m}.
ho

CL/K' jeq teH
By Lemma for H and iG(t) = ig(t) the last term equals

ig/u(0) =

1 y
o ;Imm{zg(st),m} =1+ ¢r/k(m—1).

This finishes the proof. O
Now we can prove Theorem

Proof of Theorem[1.57 With the notations in Lemma we get for 0 € G/H
ceG,H/H
sjlo)—1>u

@ s strictly increasing i
o er/r(J(0) = 1) > pr ko (u)
Lemma [L.42].
& igu(0) = 1> ¢ppr(u)
o € (G/H),
asvzan/K/(u). O

The functions ¢/, ¥ k enjoy the following transitivity in field extensions.
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Lemma 1.43. We have

PL/K = ¥K'/K °PL/K’
and

Yok =YLk ° VK K-

Proof. We only have to prove the statement for ¢. For v = —1 we get

or/k(=1) = 1= 9g/k opr/x (=1).

As both sides are continuous it suffices to show that for any u € R>_q \ Z the
derivatives coincide. Set v := ¢k (u). We get

(pKr/K © sﬁL/K/)’(U)
:(PIK’/K(U) ) @/L/K/(“)
_H(G/H), £(H,)
€K'/K €L/K’
Theorem mﬁ(GuH/H M
B €K'/K €L/K'
evw=exr e i §Gu
B €L/K
:@/L/K(U)-
This finishes the proof. (I

Now we can prove the desired compatibility of the upper numbering filtration
with passage to quotients.

Lemma 1.44. We have
(G/H)" =G"H/H
for allve R>_;.
Proof. We have
(G/H)®

Ii:wx_//;((v)

(G/H)a

IU1:¢L:/K’(I)GMH/H

U1=¢ﬂx(w)

G“H/H
Lemma [T.43] implies
u= kWL k(U k())) =L/ k(WL () =v
and we win. O
Lemma has the pleasant consequence that for we can extend the upper
numbering ramification filtration to infinite Galois extensions. Namely, if L/K is

an arbitrary, possibly infinite, Galois extension and G = Gal(L/K), then we can
set

G’ = lim(G/H)"
H
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for v > —1, where the limit runs over all open, normal subgroups H C G. Then
the G C G,v > —1, are a decreasing sequence of normal closed subgroups, and
G'H/H = (G/H)" for any H C G open, normal and v > —1. Moreover,
N ¢ ={1}
v>—1
as the intersection must be contained in the intersection of all open, normal sub-
groups H C G.

Example 1.45. For K, = |J K., the infinite Lubin-Tate extension from Sec-
n>1

tion [L.5] we conclude from Example that the jumps of G = Gal(K,/K) in the
upper numbering filtration are nicely given by

0,1,2,....
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1.8. Proof of the local Kronecker-Weber theorem. In this section we want
to deduce the local Kronecker-Weber theorem from the Hasse-Arf theorem. Let us
recall its statement.

Theorem 1.46 (local Kronecker-Weber). Let K be a (non-archimedean) local field
and m € K a uniformizer. Then
K, KT

is the maximal abelian extension of K.

Here, K™ is the maximal unramified extension of K (inside some fixed separable
closure of K), and K the Lubin-Tate extension associated with 7 from Section[L.5]

Proof. The proof follows |[Gol81]. Let L/K be an abelian extension. We want to
prove that
LCM:=K, K™,
Consider the short exact sequence
1— Gal(L-M/M)— Gal(M - L/K,) — Gal(M/K,) — 1
of abelian profinite groups. As
Gal(M/K,) = Gal(K™/K) =~ Z
there exists a splitting s: Gal(M/K,) — Gal(M - L/K). The fixed field

F
for the (closed) image of s is a totally ramified extension of K, with F- M = L-M
and F/K (infinite) abelian. Now the claim follows from Lemma d

Lemma 1.47. Let F/K, be a totally ramified extension with F'/K abelian. Then
FCK,.

The field K is no longer discretely valued (due to its infinite ramification). With
F/K, totally ramified we therefore mean F' N K, K™ = Kﬂﬂ

Proof. Set H := Gal(F/K,) C G := Gal(F/K). As F/K, is totally ramified
G=G".
For v > —1 let us write
o = | o,
e>0

Hence, G # GV* if and only if v is a jump. It is sufficient to show that for any
jump v € R>¢ of the filtration GV, v > 0, we have

G'NH=G""NH.
Indeed, if true this implies
HCG"
for each v > 0, and hence H = {1} as (| G” = {1}. But H = {1} implies F = K,
and hence the lemma. Let v > 0. The;)lzo
(7) [G”: G = [(G/H)" : (G/H)"[G* N H : G'" N H|

5Alternatively, each element Gal(F/K) acts trivially on the residue field of F.
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using (G/H)" = GYH/H, cf. Lemma We have

G/H = Gal(K, /K)
and thus by Example [I.45] we know that

qg—1, v=0
(G/H)": (G/H)"] = {4, vE L
1, UERZ()\Z.

In particular,
(G/H)" : (G/H)""] > q—1
if (G/H)": (G/H)"*] # 1. From Corollary [L.33] we know that
[G":G'] <q

for each v > —1. Hence, if

[G"NH: G'TNH|#1,
then by (Equation (7)) we can conclude that

(G/H)": (G/H)" ] =1,
i.e., that v is not an integer, and that v is a jump of G¥,v > 0. However, this is a

contradiction to Theorem as we assumed that F'/K is abelian. O

In the proof of Lemma we used the assumption that G = Gal(F/K) is
abelian only to conclude by the theorem of Hasse-Arf that the jumps G¥,v > 0, are
integers. In particular, for any totally ramified extenstion F/K, with Gal(F/K)
not abelian, not all jumps on G = Gal(F/K) can be integers.

Serre gave an example of a non-abelian extension L/K with jumps in the upper
numbering not all integral. In fact it is sufficient that

G = Gal(L/K)
is isomorphic to the quaternion group of order 8 and G4 = {1}, cf. [Ser13 Chapter
3, 83, Exercise 2]E| The jumps occur at
1,3/2.

1.9. Proof of the Hasse-Arf theorem. We now want to give the proof for the
Hasse-Arf Theorem following [Sen69], cf. [Yos08, Theorem 6.11]. Let us recall
the situation and thus fix a complete discretely valued field K with ring of integers
A = Ok and perfect residue field k. Let L/K be a finite Galois extension with
abelian Galois group G := Gal(L/K) and set B := Op. Set

n:=[L: K] =1G.

We want to see that if v > —1 is a jump for the ramification filtration G¥ of G in
the upper numbering, i.e.,
G #£G =] e,
e>0
then v is an integer. Equivalently, we want to see that if G; # G;11 in the lower
numbering with ¢ € Z>_1, then

vi= k(i) € Z.

61 used [Seri3, Chapter 3, Proposition 11] when solving this exercise.
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The cases i = —1,0 are clear as ¢ x(—1) = —1 and ¢,k (0) = 0. If i > 0, then

. 1
ok (i) = g*o(gl +g2+...0i),

where g; := {G; as was remarked in Section
One can make the following initial reductions.

e If G¥ # G, then by the structure theorem of finite abelian groups, there
exists a subgroup H C G with G/H cyclic and GYH/H # GY*TH/H. Using
Herbrand’s theorem Theorem and replacing L by L reduces us to the
case that G is cyclic.

e Writing G as a product of cyclic subgroups of prime power order reduces
us by the same argument as before to the case that §G is a prime power.

e If L/K is tamely ramified, i.e., #G is prime to the characteristic of k, then
G1 = {1} and we are done.

Hence, we reduced to the case that G is a cyclic p-group of order p™ for some
m > 1, where p > 0 is the characteristic of k. In particular, Gy = G; and L/K is
wildly ramified.

Fix a generator

o €@,
and for 0 < j < m let
GU) G
be the unique subgroup of order p™~7, i.e., G(j) = <O’pj> and
G=G0)2G1)2G2)2....
From Corollary and the structure of the subgroups of G we can conclude that

each subgroup G(j) C G equals a higher ramification subgroup of G. Hence, there
exist jumbs 0 < ng < ... < ny,—1 with

G(0) = Go = ... = G,
G(l) = Gn0+1 =...= G’ﬂl
G(j) = an71+1 =...= an

G(m) = Gnm,1+1 = ....

We get
1 1
er/K(no) = 9*0(91 +.oF ) = p—mnopm = ng,
1 o ny —n pm—l ni —n
er/(n) =no+— 3 gi:n0+(1—£):no+w
90 t=ng+1 p
and in general
ny—n n; —n;j_
@L/K(nj)—n0+w+...+m

for 1 < j <m — 1. Thus, in the end we have to prove the congruences
n; =n;j_1 mod p’

for1<j<m-—1.
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Recall the function
ig: G = ZsoU{oo}, T vp(r(my) —mr)
from Section It has the decisive property that
ig(s) > i+ 1if and only if s € G;
for s € G,i > —1. We can conclude
G(j) CG;
oo? € G;
sigo?) >i+1.
We get _
nj+1=i(o?)

for0<j<m-—1as o € G, \an+1. Hence, in order to finish the proof of the
Hasse-Arf theorem Theorem it suffices to prove the congruences

i(e” ) = i(0”) mod (p)

for 1 < j < m. For this we follow [Sen69] and consider the following slightly more
general situation. Let A be a complete discrete valuation ring with perfect residue
field k of characteristic p, fraction field K = Frac(A), normalized valuation vk and
let us fix a uniformizer m € A. Let

c: K > K

be a “wildly ramified” automorphism, i.e., o is an automorphism of K preserving
A, and vk (o(z) —z) > 1 for x € A. Define

i(0) =vk(o(m)/m—1) =vk(o(r) —7) —1 € ZU {0}
The function o — (o) has the following important property.
Lemma 1.48. For n € Z with p-adic valuation a we have
i(o™) = i(o?").
Proof. Write n = p*m with ptm. Then with 7 := oP" we get
o —1=(r-1D(F" 4. +7+1)

in the polnyomial ring Z[o]. As o (and hence 7) is wildly ramified, 7 acts trivially
on

(m)*/(m)"™*
for each i > 0. Hence, (7™~ ! + ... + 7 4+ 1) acts via multiplication by m on

(m)t/(m)**L. As ptm we can conclude that (7™ 1 +...+7+1) preserves valuations,
and thus that

i(o") =vk((o" =) —1=vg((r — )7m) — 1 =i(7)
as desired. ([l

Applying the following theorem in our previous setup with K = Lando: L — L
the chosen generator of G = Gal(L/K) = Z/p™ finishes the proof of the Hasse-Arf
Theorem m (and thereby of the local Kronecker-Weber Theorem [1.12)).
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Theorem 1.49 ([Sen69, Theorem 1]). We have
z'(opjfl) = i(apj) mod p’
for each j > 1.

It is possible that z'(apj) = oco. In this case, oo is supposed to be equivalent to
each natural number. In other words, if z'(ap]) = 00, then nothing has to be proven.

Proof. By induction on n > 1 we prove that for any wildly ramified automorphism
T: K> K
- . ]
i(r?" ) = i(77") mod p’
for 1 < j < n. If n =1, then nothing has to be proven. Hence, assume that the
statement is wrong for some n > 2 and o, i.e.,

i(apnfl) £ i(o?") mod p".
Applying the induction hypothesis to o? we get

i(0?" ) =i((o?)" ) = (o)

n—1

) =i(o?") mod p" 1.
Set
s=1i(c?" ) —i(o?") € Z.
By Lemma m (applied to p = s and oP) there exists an element z € K such that
vi(z) = s, vg(oP(z) — z) = s +i((oP)?).

By Lemma i((o?)*) = i((oP)P" ") because s has p-adic valuation n— 1. Hence,

n—1

vic(oP(2) — 2) = s +i(o?" ) =i(a?" ).

Set
r:=0P 2+ .. +o(2) +2

We have

oP ' 4o+1=(0c—1)P" modp
in the polynomial ring Z[o]. Hence, write

ot to+1=(0c—1)P"+pf(o)
with f(o) € Z[o]. We can conclude

v (2) > min{rg ((0(2) = 2) 7 pf(0)(2))} > vie(2)

as o is wildly ramified and vk (p) > 0. Moreover,

v (0(z) — 2) = vg (0P (2) — 2) = i(o®" ).

Write
= Y
n=vk ()
as in Lemma [1.50} and define
Y= 0(@) = 2, g = 0(2) — 7.
Let vp: Z — Z U {oo} be the p-adic valuation and set

Y1 = Z Yu,

vp(p)<n
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V2 = Y U

vp(p)>n

Consider a non-zero summand y,, in ¥, in particuluar p € Z,pu > vi(z) and
vp(p) > n. Then

n—1

Lemma mu+i(gp;(u)) > yK(x)-i-i(Jpn) > S—l—i(o’pn) = i(ap )

VK (Yu) = pti(o”)
by our construction of = and the fact that i(apyp(“)) > i(o?"). In particular, each
summand of yo has valuation > vk (y) = i(apnfl). We can conclude

vk (y) = vk (y1)-

The crucial point in the proof is the observation that the
vk (Yu) = p+ (")

for p € Z,v, () < m,x, # 0 and i(crpn_l) are all pairwise distinct. Granting this,
the valuation of y; must be distinct from y, which then finishes the proof. Therefore
assume that

p+i(o") =X +i(o?)
for p, A € Z with v, (1), vp(A) < n. If v(1) = vp(A), then by Lemma [L.48]i(c*) =
i(o), which then implies ;1 = X. Hence, we may assume that v,(u) > v,()). Then
(1 4+ X) = min{uy (1), vy (W)} = 1, (V).

By the induction hypothesis we know that

i(e” ) = i(0”) mod p’
for 1 <j<mn. As v,(A) < vp(p) < n we can conclude that

i(o") = i(c?) mod p*r.
This implies that

vp(i(0) = i(0™)) > vp(p) > vp(N).

Therefore, i(o#) —i(0) # A — p as desired. If v,(u) < n and i(o?" ) = p+i(on),
then
i(o") = i(Jpnfl) mod p" 7,

which implies p"~! | u, ie., vp(u) = n+ 1. But then 2'(01’"71 = i(o*) and thus
w = 0, which is contradicting v,() < n. Thus, the proof is finished. O

We used the following lemma in the proof of Theorem

Lemma 1.50. For each p € Z there exists an element x,, € K, such that vi(z,) =
p and vi(o(x,) —x,) = p+i(c”). Moreover, each x € K can be written as

xr = i LU#
p=v (x)

with x,, for p > vi(x) being zero or satisfying vk (x,) = p and v (o(z,) —x,) =
w+i(oh).
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Proof. Assume p > 0. Then set

p—1
T, = H o' (m).
i=0

Then vg(z,) = p. Moreover,

~

o(z,

vi (0(2u) = 2p) = Vi (20) + Vi (

and
o(x,) _ o(m)

J:M v
This implies
o
v (20 py =y (P gy omy
ZL‘M T

and therefore vi (o(z,) — z,) = p+ i(0*) as desired. If p < 0 set z, = i with
the previously defined x_,,. Then vi(z,) = p and

vi(o(zu) — p)

=M + VK(@ — 1)

=+ VK(O'T(’]T) -1)
=p+ VK(%(W) -1)
=p +i(o*),

which finishes the proof of the first assertion. For the last statement let x € K and
let
[-]:k— A
be the Teichmiiller lift, cf. [Tial Proposition 8.3.5.]. Note that
a([A]) = A
for each A € k as o is wildly ramified. If z, satisfies
v (xp) = p, v(o(z,) —zu) = p+i(d"),

then [Az, is therefore zero or satisfies the same statements. Now it is clear by
successive approximation that desired expression for = exists. O

Exercise 1.51. Let A be a complete discrete valuation ring with perfect residue
field k and K := Frac(A) its fraction field.
(1) Let L/K be a totally ramified finite Galois extension with Galois group G :=
Gal(L/K). Let f(X) € A[X] be the minimal polynomial of a uniformizer
7w, € L over K. Show that

vi(f'(m) =D ic(s) = Y ((G) = 1).

s#1 i=0
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(2) Assume that k is finite with ¢ := #k. Show that the Galois group of the
maximal tamely ramified extension of K (inside some fixed algebraic closure
of K) is isomorphic to the semidirekt product

7' %7
with 1 € Z acting on 7 = @ Z/n by multiplication with g.
(n,g)=1

1.10. Supplements on local class field theory. We mention several statements
that also fall in the realm of “local class field theory”. The first is the computation
of the Brauer group of a local field.

The (cohomological) Brauer group of a field K is defined as the second Galois
cohomology group

Br(K) = HZ (Gal(K/K),K*)

and it identifies with the (Azumaya) Brauer group of equivalence classes of central

simple algebras over K.
If K is a non-archimedean local field, then there exists an isomorphism

inv: Br(K) 2 Q/Z,

cf. [Ser13l Chapter XII, §.3].

When discussing formal A-modules of height h > 1 we will construct explicit
central division algebras Dy, with inv(Dp) = 1/h.

Another topic which was left over is the independece of the morphism

ri=r.: KX — Gal(K*/K)
in Section [1.5l We may come back to this question after discussing deformation
theory of formal A-modules.

We did not show (and don’t plan to do so) that for a finite abelian extension
L/K the kernel of the composition

r: K* — Gal(K,/K) - Gal(L/K)

is given by the norm subgroup Ny /x (L*) € K*. We won’t discuss functoriality of
r if K changes either.
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2. LUBIN-TATE SPACES

We want to study formal A-modules and in particular formal group laws further.
It is clear that the definition of a formal A-module Definition generalizes to
any ring A, i.e., if A is any ring, R an A-algebra, then a (commutative) formal
group law
F € R[[X,Y]]

together with a ring homomorphism [~]r: A — Endpqrr)(F) can be called a
formal A-module if
[a]F(X) = aX mod (X)?
for any a € A. Let us denote by
FGL4(R)

the category of formal A-modules (with the natural choice for morphisms, cf. Sec-
tion . Clearly each morphism ¢: R — S of A-algebras induces a functor,
denoted by ¢, or —®grS,

FGLA(R) — FGLA(S),

by applying ¢ to the coefficients of F' € R[[X,Y]] and [a]r € R[[X]],a € A.
The typical example of a formal A-module is the formal additive A-module ((/};
given by
F(X,)Y)=X+Y, [a]Jp(X) :=0aX, a € A,

and for a general A each formal A-module will be isomorphic to this, e.g., if A
contains an infinite ﬁeldm Therefore we will mostly assume that A = Z, where
formal A-modules are just formal group laws, or A a (not necessarily complete)
discrete valuation ring with finite residue field, which captures localisations Z )
or rings of integers in (non-archimedean) local fields. It may be possible that
the results presented here admit suitable generalizations to the case that A is a
Dedeking ring with finite residue fields at maximal ideals, but we don’t pursue this
question here.
We leave the following as an exercise.

Exercise 2.1. Let A be any ring, R an A-algebra and a € A.

(1) If @ is invertible in R, then the category FGL4(R) is equivalent to the
category FGL 4[1/4)(R) of formal A[1/a]-modules.
(2) If a is nilpotent in R, then the category FGL4(R) is equivalent to the

category FGL 3 = of formal ga—modules, with A, the (a)-adic completion of
A. '

Thus depending on R we may change A without any trouble. Let us note that
formal A-module laws exist in abundance and the problem is to classify them up
to isomorphism. More formally, for R € Alg 4 set

G(R) :={g(X) € R[[X]] | f(0) =0,f'(0) € R”}.
For any g € G(R) the substitution
g: R[[X]] = R[[X]], X = g(X)

"This will implicitly be proven in this chapter.
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defines an R-algebra isomorphism (this is implicit in Exercise 2.1)). Let us write
g~ ! for its inverse, i.e., g71(X) € G(R) is the unique power series satisfying
97 (9(X) = X, g(g7 (X)) = X.
On checks that the set G(R) is naturally a group for the binary operation
goh = g(h(X)).
Moreover, it acts on FGL4(R): Given any formal A-module (law) F' € R[[X,Y]]
we obtain the new formal A-module (law)
F9 =g~ (F(9(X),9(Y))) € R[[X,Y]]
with formal multiplication
[a]rs (X) == g7 ([a]r(9(X)) € R[[X]], a € A.
By construction the power series g(X) € R[[X]] defines an isomorphism
g: F9 S F

of formal A-modules. The classification of formal A-modules amounts therefore to
understanding the G(R)-orbits on FGLA(R)H

For the rest of this chapter we will follow (at least) [HG94], [Dri74] and lecture

notes of Fargues [Far] resp. Lurie [Lurl0).
As a start, we discuss the height of a formal A-module.

2.1. The height of a formal A-module. Assume that A is a (not necessarily
complete) discrete valuation ring with uniformizer m € A and finite residue field
k = A/7 of characteristic p and cardinality ¢ = p°.

Assume that R is an A-algebra with 7R = 0 and that

F e R[[X,Y]]
is a formal A-module, whose multiplication we denote by
t: A — Endpgr(g)(F)
or
[a] = la]» = 1(a) € R[[X]].
Let us note that although 7R = 0 we need not have ¢(7) = 0. All we know is that
((m)(X) =7X =0 mod (X)2
In order to state the next lemma we have to discuss the Frobenius twists of formal

A-modules. Let
Frob,: R = R, r—1?

be the p-Frobenius of R and

Frob, = Froby: R — R, r 11
be its g-Frobenius for ¢ = p°. Note that Frob, is a morphism of A-algebras but
Frob, not if ¢ # p. Applying for b > 1 the morphism Frobf) to the coefficients of a

formal A-module F over R and its A-multiplication ¢(a),a € A, we obtain a formal
group (the “b-th Frobenius twist of F”)

F@") = Frobz*F,

8The functors R — FGL4(R), R — G(R) are corepresentable (the latter by R[rf, ro,r3,...]).
Therefore the better aim should be to understand the stack quotient [FGL 4 /G].
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which is equipped with the ring morphism
L(pb) A — EndFGL(R) (F(pb))
by raising the coefficients of [a]#(X),a € A, to their p’-th power. If ¢ | b the pair
(F(pb)7 L(pb)> is again a formal A-module. Indeed,
L(pb)(a)(X) =a¢”" X = aX mod (X)?
for a € A in this case. The map (“the b-the Frobenius of F”)
opp: F— FO) X 5 x7
is a morphism of formal groups and A-linear with respect to ¢, L), Indeed,
(FX, V)P = F®)(x@) ye)
as follows from the fact that Frobf): R[[X,Y]] — R[[X,Y]] is a ring homomorphism.
If ¢ | b, then 4, is even a morphism of formal A-modules.
In the following we let
f" e R[X]]
be the formal derivative of a power series f € R[[X]].
Lemma 2.2 ([HG94, Lemma 4.1.], [Far, 1.8.2.]). Let f: Fi — Fy be a morphism
of formal A-modules over k'. If f'(0) =0, then
F(X) =goppw(X)=g(X?)
for some morphism g: F\9 — F. In particular, if R =k is a field extension of k,

then either f = 0 or there exist a unique h € Z>o, and a morphism g: quh — Fy
of formal A-modules such that

h
f(X) = go@pen(X) =g(X")
and ¢'(0) # 0.
In the case that R = k' is a field we call h the height of the homomorphism f
and write ht(f) for it. By convention we set ht(0) := oco. Clearly, if fi: F1 — Fj

is of height hy and fo: Fy — F3 of height ho, then f; o fi is of height hy + hs.
Moreover, a homomorphism is of height 0 if and only if it is an isomorphism.

Proof. By Exercise we may assume that A is complete. We first prove that
/' = 0. Let us take the derivative of
with respect to X. This yields

oF

FRCGY) L (X Y) = S22 (706, () 7/ (X),

and thus by setting X = 0 (using F1(0,Y) =Y, f(0) =0, f/(0) = 0)

, oF, _OFy S
PO SE0.Y) = 20,701 (0) =0
But
OF,
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and thus 251(0,Y) € R[[X]]* is a unit, which implies that
Fvy=o.
This implies that we can write
f(X) = g1 (XP)

with g1 € R[[X]] € k' because p =0 € R and each n € Z prime to p is invertible in
R. We claim that

(8) g (FP(X.Y)) = Fa(g1(X), 01(Y)) € RI[X, Y]],
i.e., that g;: Fl(p ) F5 is a morphism of formal groups. But the R-algebra mor-
phism
R[[X,Y]] = R[[X,Y]], X, Y — XP YP
is injective and maps (§8]) to
g (FP(X7,Y7) = gi((FL(X,Y))") = f(FL(X,Y))
resp.

Fa(g1(X7), 91(Y?)) = B (f(X), f(Y)).

As f: I — Fy is a morphism, we can conclude that holds. Similarly, one checks
that morphism g¢; is A-linear, i.e.,

9112 (@)(X)) = tp, (@) (g1 (X))

for a € A. Write ¢ = p© with ¢ > 1. Iterating the above argument with f replaced
by g1, it suffices to show the following claim. If for 1 < b < ¢ there exists an
A-linear morphism

g: F7) 5 R
such that
F(X) = gopp(X) = g(X™),
then ¢’(0) = 0. Write
F(X) = dXx*" mod (X¥' 1)

with d = ¢’(0). The ring A contains a primitive ¢ — 1-th root of unity ¢ € A. By
A-linearity of f we know that

[ (F(X)) = F([¢] R (X))
Now looking at the coefficients of X " on both sides we find
¢d=¢"d.
As b < c the element 1 — Cpb_l € A is a unit. This implies d = 0 as desired. (]
We can now define the height of a formal A-module.

Definition 2.3. Let k' be a field extension of k and let F be a formal A-module
over k'. Then we define the height h of F as the height of the endomorphism
[rlp: F — F.
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As the height can also be defined as the largest integer such that [7|p: FF — F

factors over F(¢") we see that the height does not depend on the choice of the
uniformizer 7. By construction the Lubin-Tate formal A-module in Section is
of height 1. The formal A-module G, associated to

F(X,Y)=X+Y € k[X,Y]]

and
[a)(X) =aX, a € A,

is of height co as 7 =0 € k.
Let us now produce examples of formal A-modules of height h € Z>.

Lemma 2.4. For 1 < h < oo there exists a unique formal A-module F} €
A[[X,Y]] with [x]g,(X) = X9 + 7X. Morcover, Fy&@ak is of height h and
A EndFGLA(A)(Fh)-

Note that we could replace X7' + 7X here by any other f (X) € A[[X,Y]] such
that f(X)=7X mod (X)2 and f(X)= X4" mod (r).

Proof. Using Remark [I.15] all statements follow from Lemma O

In particular, over k = A/m4 there exists formal A-modules of arbitrary height
h > 1, and then by base change over any field extension of k. The height is an
interesting invariant of formal A-modules over fields.

Theorem 2.5. Assume that k'/k is a separably closed field. Then two formal
A-modules F1,Fy € K'[[X,Y]] are isomorphic if and only if they have the same
height.

The “only if” statement is easy. More generally, there do not exist any non-
zero morphisms of formal A-modules of different height as the height is additive
under composition. We will prove this theorem in Theorem For mention the
following applications of heights.

Exercise 2.6. Assume that A is complete and let h € Z>1. Let F, € k[[X,Y]] be
the reduction of the formal A-module F}, from Lemma[2.4] Show that

Endrar,, () (Fr) = A[I]/(IT" — )
with II the endomorphism X9 of F},.

2.2. Lubin-Tate spaces via formal group laws. Let us now give the definition
of Lubin-Tate spaces. Let A be a complete discrete valuation ring with finite residue
field k of characteristic p and cardinality ¢. Fix a uniformizer 7 € A. We let

be the category of A-algebras R such that 7 is nilpotent in R. Thus Nilp, is the
“union” of the categories of A/n"-algebras for n > 0.

Let us fix a formal A-module Fj, € k[[X, Y]] of height h € Z>1, e.g., the reduction
of the F}, constructed in Lemma with

[m]m, (X) = X" € K[[X]].
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Definition 2.7. Let R € Nilpy, and f: F — G a morphism of formal A-modules
given by the power series f(X) € R[[X]]. Then f is called a x-isomorphism if there
exists a nilpotent ideal I C R such that

f(X)=X mod I,
i.e., if f reduces to the identity modulo I C R.

Note that f’(0) € R* as I is nilpotent. In particular, each *-isomorphism
is an isomorphism of formal A-module( law)s. Moreover, the existence of a *-
isomorphism f: F — G forces F = G mod 1.

We can now define the Lubin-Tate space (for height h) as the space of *-
deformations of Fj,.

Definition 2.8. For R € Nilp, we set
M, (R)
as the set of x-isomorphism classes of formal A-module laws F € R[[X,Y]] such
that F = Fp, € R/I[[X,Y]] for some nilpotent ideal I C R with m € I. The functor
Mp, : Nilp4 — (Sets)
is called the Lubin-Tate space (for Fy,).

Let us call a formal A-module F' € R[[X,Y]] such that F = Fj, mod I for some
finitely generated nilpotent ideal I C R containing 7 a *-deformation of F}, over R.

The next aim of this course is to prove the following (version of a) theorem of
Lubin and Tate, cf. [LT66, Theorem 3.1.], [HG94l Proposition 12.10].

Theorem 2.9 (Representability of Lubin-Tate space). For h € Z>y there exists
an isomorphism
Spf(A[[le s 7Xh*1]]) = MFh,7
where Spf(A[[X1,...,Xn_1]]) denotes the functor
Nilp, — (Sets), R +— Homa cis(A[[X7,..., Xp-1]], R)
with R viewed as a discrete A-algebra.

In particular, we can construct many x-deformations over an A-algebra R €
Nilp,. From another viewpoint Theorem equips the Spf(A[[X1,...,Xn-1]])
with more structure, namely a (pro-)universal x-deformation of F},. This additional
structure is highly interesting as it leads to the Gross-Hopkins period morphism and
the higher level Lubin-Tate spaces.

The following lemma is a critical place where the assumption that h € Z>; is
used.

Lemma 2.10. Assume h € Z>y. Let R € Nilp, I C R a nilpotent ideal and let

[+ Iy — Fy be a morphism of formal A-modules over R. If F is a x-deformation

of Fy, with h € Z>1 and f =0 mod I, then f =0.

Proof. Assume I™ = 0. Considering the surjections
R=R/I" - R/I"" — ... R/I

we can reduce to the case that I? = 0. Let J C R be a nilpotent ideal containing
7 such that F = Fj, mod I. Using the filtration

0=JC..CJUC...CJICI
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for some 7 > 0, we may assume that JI = 0. In particular, 7 = 0. By assumption
the power series
f(X) € R[[X]]
has coefficients in I. Write
[7]p, = aX?" + h(X)

with a € R* and h(X) € R[[X]] having coefficients in J = (m, J) (this is possible
by our assumption that F; = Fj, mod J). Because 0 = 71 = JI we can conclude
that

H([lm (X)) = flax ).
On the other hand,
f(mlp (X)) =[], (F(X)) = 7 f(X) =0
because I? = I = 0 and [7],(X) = 7X mod (X)?2. Because
R[[X)] = R[[X]], X > aX?"
is injective we can conclude that f = 0 as desired. [

Lemma [2.10] implies that each morphism
f+F— Gq

of formal A-modules over R is zero if F' is a x-deformation of F} with h € Z>;.
Indeed, by Lemma we may replace R by R/(m,J), and then use that

F([m)r, (X)) = F(XT)
while
(g, (f(X)) = mf(X) = 0.

Another corollary of Lemma[2.10|is that there exists at most one x-isomorphism
between two x-deformations of Fj,.

If R € Nilp 4 is local artinian, then its maximal ideal mr C R is nilpotent. From
Lemma [2.10| we obtain that the sets of isomorphism classes of *-deformations over
R identifies with

{F € R[[X,Y]] | F = F, mod mg}/ ~,
where two such F, F; are called equivalent if there exists an isomorphism f: F; —
F; reducing to the identity modulo mpg.

This explains the link between Definition |2.8] and the viewpoint taken in the
references [LT66], [HG94] and [Far]. We choose this different presentation as it
closer to the definition of a Rapoport-Zink space.
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2.3. Lazard’s theorem for formal A-modules. The proof of Theorem [2.9] re-
quires a detailed understanding of formal A-modules. Let us assume that A is a
(not necessarily complete) discrete valuation ring with finite residue field as before

or A=7.
Let R be an A-algebra. We will analyze formal A-modules
F € R[[X,Y]],[a]r(X) € R[[X]],a € A,

by approximating them modulo powers of (X,Y) C R[[X,Y]].
Definition 2.11. Let n > 2. An n-truncated (commutative, one-dimensional)
formal group law is an element F € R[[X,Y]]/(X,Y)™ such that

(1) F(X7O) - XvF(OaY) =Y,

(2) F(X,F(Y,2)) = F(F(X,Y), Z) € R[X,Y, 2} /(X,Y, 2)"

(3) F(X,Y)=F(Y,X) € R[[X,Y]]/(X,Y)".
Let FGL<,,(R) be the category of n-truncated formal group laws (with the natural

notion of morphisms, cf. Definition . An n-truncated formal group law F
together with a ring homomorphism

Lp: A— EndFGLSn(R)(F)a a +— [a]p

is called an n-truncated formal A-module if [a]r(X) = aX mod (X)? for all a € A.
We let FGL<y, a(R) be the category o n-truncated formal A-modules (with mor-
phisms the A-linear morphisms of n-truncated formal group laws).

Here as for the case of formal group laws
FGL<,(R)

denotes the category of n-truncated formal group laws, which is naturally enriched
in abelian groups. It is clear that modding out the degree n part everywhere yields
a functor

FGLSn+1,A(R) — FGLSH’A(R)
from the category of n + 1-truncated formal A-modules to n-truncated formal A-
modules for any A-algebra R. Moreover, the category of formal A-modules can be
reconstructed via

FGLA(R) 2 lim FGL<,, a(R).

A key ingredient in understanding formal A-module laws is to understand the

fibers of
FGLSn+1’A(R) — FGLSn’A(R)

This is partly answered by the following lemma, which is a combination of [Laz55]
Proposition 1] and [Dri74, §1].
Lemma 2.12. Let n > 2. Let

Fi € R[[X,Y])/(X,Y)""" [a]p, € RI[X]]/(X)",
be an (n + 1)-truncated formal A-module and let
Fy € R[[X,Y])/(X,Y)"*", [a]p, (X) € R[[X])/(X)""!,a € A,

be elements such that Fy = Fy mod (X,Y)", [a]lp, = [a]p, mod (X)) for a € A.
Then Fy is an (n + 1)-truncated formal A-module with multiplication [—]F, if and
only if for

[(X,Y) = F2(X,Y) — Fi(X,Y)
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and
a]p, (X) = [a]p, (X) = h(a) X", a € A,

the following equations are satisfied:

(1) T'(X,0)=0,T(0,Y) =0,
YV, X)+I'(X,)Y+2)=T(X, )+ (X +Y,2),
(X7 Y) = F(Y7X):
(@)(X"+Y") +a"T(X,Y) =h(a)(X +Y)"+al'(X,Y),
(a+b)X™ =h(a)X" + h(b)X™ +T(aX,dY),
(ab) = ah(b) + h(a)b™

Proof. This follows directly by plugging in the definitions and using repeatedly that
all terms of degree > n + 1 vanish. For example,
FQ(X, Y) = FQ(K X)
if and only f (X, Y) =T'(Y, X) as Fi(X,Y) = F1(Y, X). As another example we
can calculate
F([a]2(X), [al2(Y)
EFl([a]F1 (X)a [a’}Fl (Y)) + anF(Xa Y) + h‘(a’)(Xn + Yn) mod (Xa Y)n+1

while
[a] m, (F2(X,Y))

=lalp (F1(X,Y)) +al(X,Y) + h(a)(X +Y)" mod (X,Y)" !
for a € A. The required equations
[a + 0], (X) = Fa([a] r, (X), [b] , (X))
and
[ab]p, (X) = [a]p, ([b] (X))
for a,b € A yield the other conditions. O

Note that in these formulas we did not use the multiplication in R, only its
A-linear structure. If M is any A-module and n > 2, then we therefore set

Dy a(M)
as the A-module of elements m; € M,0 < i < n,h(a) € M,a € A, such that with
the formal expression
NX,Y)= Y mXy"’
0<i<n
the equations in Lemma [2.12] are satisfied. It is easy to write down elements in
Dn,A (M) Set
B,(X,)Y)=(X+Y)"-X"-Y" € Z[X,Y],
and let
Tn € DnA(A)
be the element given by the collection
{T'(X,Y) := Bp(X,Y),h(a) == (a" — a),a € A}.
It is easily checked that ~, is well-defined, i.e., the equations in Lemma [2.12] are
satisfied. For any m € M we therefore obtain the element

Y, - M € Dy 4 (M).
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The following lemma is the crucial point in the proof of Lazard’s theorem. For
A =17 it is [Laz55, Lemme 3] and for A a discrete valuation ring with finite residue
field it will be extracted from [Dri74, Proposition 1.3.]. We will give the proof of
Lemma in Section 241

Lemma 2.13 (Lazard, Drinfeld). Let n > 2.

(1) Assume A =7Z. If n is not a prime power, then set Ydiv,n = Yn € Dn,a(4).
Ifn = ph is a prime power, then there exists a unique Yaiy.n € Dn a(A) such
that pYdiv,n = Yn- In both cases, the element Yaivn € Dn,a(A) represents
the functor Dy, a(—).

(2) Assume that A is a discrete valuation ring with finite residue field k having
q elements. Let m € A be a uniformizer. If n is not a power of q set
Ydiv,n = Yn € Dn a(A). If n is a power of q, then there exists a unique
element Yaiv,n € Dn,a(A) such that T™Ydiv.n = Yn- In both cases, the element
Ydiv,n € Dn,a(A) represents the functor Dy, a(—).

In other words, if M is an arbitrary A-module and v € D,, 4(M), then there
exists a unique m € M, such that
Y = Ydiv,n - M.
By Lemma we can conclude that if
F € R[[X,Y]],[a]r(X),a € A,

is an n + 1-truncated formal A-module, then the n 4 1-truncated formal A-modules
agreeing with F' modulo (X,Y)" differ from F,[a]r by a multiple (in R) of the
generator Yy, div € Dy, a(4).

Let us make this explicit for small n > 2 if A = Z. For this let d,, be the greatest
common divisor of the coefficients of B, (X,Y"). When proving Lemma we will
prove that

d - 1, if n is not a prime power,
"] p, if n is a power of the prime p.
For A = Z it follows from Lemma that the canonical element 7qiy,n is given by
1
Ca(X.Y) = - Bu(X,Y).

n

By definition, X +Y € R[[X,Y]]/(X,Y)? is the only 2-truncated formal group
law. It is easily checked that the 3-truncated formal group laws are exactly the
FX,)Y)=X+4Y +an XY
for some a; € R where
XY = 02 (X7 Y)7
and that these define actual formal group laws (and not just truncated ones). This
implies that the 4-truncated formal group laws are exactly the

FX,Y)=X+Y +a XY +ay(X?Y + XY?)

with a1, a2 € R where
XY + XY? = C5(X,Y).
It is not true that each n 4+ 1-truncated (commutative) formal group is of the form

X + Y + a1C’2(X,Y) + CLQCg(X,Y) + ...+ an_lCn(X, Y)
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for some aq,as,...,a, € R. Namely, we leave as an exercise to show that this does
not happen for the general 5-truncated formal group law.
We are now heading to Lazard’s theorem. Let

oo (oo}
F=X+Y+Y ;XY eR[X,Y][alr(X) =aX+)_da; X' € R[[X]],a € A,
i,j=1 i=2
be a collection of power series. Then F is a formal A-module with multiplication
by the [a]r,a € A, if and only if certain equations in the ¢; ;,4,7 > 1,d;q,1 > 2,
are satisfied. For example, ¢; ; = ¢;,; for 7,57 > 1. If
I - A[Ci,j7dl,a | ’67] > ].71 > 27(1 € A]
denotes the ideal generated by these equations, then the ring
AA = A[Ci,j>dl,a ‘ i7j > 17l > 2,(1 S A]/I

carries the natural formal A-module group

Fuie(X,Y) =X +Y + > ¢ ;XY € A[[X,Y]]
i,j=1

with multiplication

(0] Py = aX + Y d1oX",a € A,
i=2
and for any A-algebra R the map

Hom(AlgA)(AA7 R) — Ob(FGLA(R))7 (f A — R) = f*Funiv

is a bijection, where ob(—) denotes the objects in a category. In other words, the
ring A4 (together with Fy,iy) represents the functor of formal A-module laws.

Our aim is the proof of the following fundamental theorem of Lazard, cf. [Laz55,
Théoeme 11| and [Dri74, Proposition 1.4.].

Theorem 2.14 (Lazard, Drinfeld). There exists an isomorphism Ag = Alty, to, .. .].

Of course, we want to produce a (more or less) explicit isomorphism. The struc-
ture of proof for Theorem [2.14]is a bit complicated. Namely, we will simultaneously
prove

(1) over R, := Alt1,...,tn_2] exists an n-truncated formal A-module, which
represents the functor of n-truncated formal A-modules,
(2) each n-truncated formal A-module over an R-algebra can be extended to
an n + l-truncated formal A-module,
(3) if K = Frac(A) and R is a K-algebra, then each formal A-module is iso-
morphic to the additive formal A-module G, r.
Set
Rn,K =R, Q04 K= K[th . ,tn,Q]
and, if A is a complete discrete valuation ring with finite residue field, fix a uni-
formizer 7 € A. By Lemma [2.13] we get generators

Ydiv,n S Dn,A (A)

corresponding to data Caivn(X,Y), haiv.n(a),a € A, satisfying the equations in
Lemma A first application of Lemma [2.13]is the following proposition.
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Proposition 2.15 ([Lazb5, Proposition 3] if A = Z). There exists sequences
Fo(X,Y) € Ro[[X, Y]], [a]p, (X) € Ru[[X]],n = 2,
and on(X) € Ry k[[X]],n > 2, such that
(1) Fo(X,Y) mod (X,Y)" is an n-truncated formal A-module with multiplica-
tion by the [a]F (X),a €A,

(2) Pn(Fn(X,Y)) = n(X) +on(Y) in R i [[X, Y]]/(X,Y)",
(3) eullalr, (X)) = ap,(X) in R [[X YT/(X V)",
(4) Fn+1(X Y) Fn(Xa Y) mod (X7Y)n7
(5) pni1(X) = <Pn(X) mod (X)",

(6) Fu(X,Y) = tnoldaivn—1(X,Y) € Ry [[X, Y]] if n > 3,

(7) [a]F, (X) = ta—2hdivn—1(a) X" 71 € Ry 1 [[X, Y]] if n > 3.
The universal formal A-module over Alty,ts,...] will be given by

Funiv = h_I>Ian S A[tl,tg, .. ][[X, Y'H7

with multiplication

[a]Funiv (X) = hﬂ[a}Fn (X) € A[tlat% .- H[Xv Y]]v a € Av
and @ := lig(pn will define an isomorphism

Funiv®AK = @a Klty,ta,...]

)

of formal A-modules.

Proof. We can set
F(X,Y) = X+, [a]p,(X) = aX, pa(X) = X.
Thus we may assume that we have constructed F),, [a]r, ,a € A, ¢, with the desired
properties and that they are polynomials of degree < n. Set
G(X,Y) = ¢ (on(X) + ¢n(Y)) € Ry k[[X, Y]]
and
[a]a(X) = ¢ (apn(X)), a € 4,
(this makes sense as ¢, (X) = X +... € R, [[X,Y]]). Then G is a formal A-
module in R, x[[X,Y]] and
G(X,Y)=F,(X,Y) € R, x[[X,Y]]/(X,Y)".
Let
I'(X.,Y) € Ry k,h(a) X", a € A,
be the degree n-part of G(X,Y) and [a]¢(X), i.e.,
G(X,Y)=F,(X,Y)+D(X,Y) € R, x[[X,Y]]/(X, V)"t
and
lale(X) = la]F, (X) + h(a)X™ € Ro  [X,Y])/(X,Y)" .
As in Lemma 212 consider
(1) Ey —F(YX)+F(X Y+2)-T(X,)Y)-T(X+Y,2),
(2) h(a)(X" +Y") 4+ a"T(X,Y) — h(a)(X +Y)" —al'(X,Y),
(3) E3 hla +0)X™ — h(a)X™ — h(b) X" — T'(aX,bY),
(4) h(ab) — ah(b) — h(a)b"
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for a,b € A. As G(X,Y) is a formal A-module with multiplication by [a]¢(X) and
F,(X,Y) € R,[[X,Y]],[a]r,(X) € R,[[X]],a € A, all the polynomials Ey, ..., E4
have coefficients in R,,. For example,
implies that
by = Fn(Fn(Xay)vz) - Fn(Xa Fn(Y, Z))
has coefficients in R,,, while
0 = [ala(G(X,Y)) — G([a]a(X), lala(Y))
implies that
Ey = Fu(la]r, (X), [a]p, (Y)) — la]r, (Fu(X,Y))
has coefficients in R,,. As ¢, has only finitely many denominators modulo (X)"*1,
there exists an m € A such that mI'(X,Y), mh(a) X", a € A, have coefficients in
R, (and not R, ).
This implies that

mE; € mR,[[X,Y, Z]],

fori=1,...,4, i.e., that
mFE; =0 mod m

fori=1,...,4. Set

I'(X,Y) = m[(X,Y)
and

h'(a) := mh(a),a € A.
We can conclude that the mod m residue classes of IV(X,Y),h/(a),a € A, define
an element of

Dy a(Ry/m)
as mE; = ...mFE4; = 0 mod m. By Lemma we find some r € R, (unique
modulo m), a homogeneous polynomial
I(X,Y) € Ry[[X, Y]

of degree n, and
h’(a) € R,,a € A,

such that
I'(X,Y) = rTaivn(X,Y) + mI"(X,Y)
and
h'(a) = rhaiv.n(a) + mh'(a),a € A.
Now define

F’I’L+1(X7 Y) = F’I’L(X; Y) + FH<X7 Y) + tnflrdiv,n(X7 Y) S Rn+1[[Xa Y]]7
[a]F, ., (X) = [a]p, + 1" () X" + th_1hdivn(a) X", a € A.
We have to find some element a,, € R,, x such that
Ont1(X) = on(X) + an X" € Ry k[[X]]

satisfies
Onr1(For1(X,Y)) = 0np1(X) + oni1(Y) € Ruy1 x[[X]],

ont1(lalp,,, (X)) = apni1(X), a€ A
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(these equations imply that F,+1(X,Y) is an n + l-truncated formal A-module
with multiplication by the [a]F, a € A.). We calculate

n1(Fn1(X,Y))
=on(Frp1(X,Y)) +an(X +Y)"
=pon(Fo(X,Y) +T(X,Y) + ty-1Taiv,n (X, Y)) + an (X +Y)"
w(Fn(X, V) + T (X, Y) 4ty 1Taivn (X, Y) 4 an(X + V)"
=pn(X) + cpn(Y FX,Y)+T"(X,Y) + tn-1laivn(X,Y) + an (X +Y)"
(X ( *Fdiwn(Xa Y) +tn-1laivn(X,Y) + an(X +Y)"

Frny1s

=
) —
=on(X) +en(Y) —
in Rot1,k[[X,Y]])/(X,Y)" 1 while
Pnt1(X) + ont1(Y)
= (X)) + on(Y) +an, X" +a, Y™
We therefore get the requirement

4 (X +Y)" = X" —=Y") = a, B, (X,Y) = (% — tp-1)Tdivn-

Moreover, we calculate
ent1(lalF, ., (X))
=pn(lalr,,,) +apa” X"
=pon([alr, (X) + 1" (@) X™ + tp_1hgiv.n(a)X") + apa™ X"
=p,(la]r, (X)) + h”( VX" + th—1hdivn(a) X" + apa™ X"
=apn(
(

X) -
=apn(X) —

h(a)X"™ + kA" (a)X™ + tp—1hdiv.n(@) X" + apa” X™
i
E le n( )Xn + tn—lhdiv,n(a)Xn + anaan
and

apn+1(X) = apn(X) + aa, X™
for a € A. Thus we get the additional equations

(a™ —a)a, = (% — tn—1)hdiv,n(a)

for a € A. By Lemma we see that there exists a unique choice for a, €
R, k. |

Let us fix sequences F,,[a]F, ,a € A, ¢, as in Proposition (they are not
unique as the r € R,, in the proof of Proposition is only unique modulo m).
We now check that the F;, € R,[[X,Y]] with multiplication [a]r, (X),a € A, are in

fact universal n-truncated formal A-module. By the Yoneda lemma this n-truncated
formal A-module defines a natural transformation

1o+ Homyalg ) (Bn, =) = FGL<n (=)
and Proposition implies that the diagram
Hom(AlgA) (Rn+1a 7) e Hom(AlgA) (Rna 7)
lnn in

FGLSn+1,A(_) FGLSMA(_)
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commutes as Fy, 11 = F,, mod (X,Y)", [a]F,,, (X) = [a]F, (X) mod (X,Y)".

Theorem 2.16 (Lazard’s theorem for n-truncated formal A-modules). For n > 2
the natural transformation n, is an isomorphism, i.e, the ring R, with the n-

truncated formal A-module F,, € R,[[X,Y]]/(X,Y)" represents the functor FGL<,, a(—)
on A-algebras.

As was explained before this implies Theorem [2.14]
Proof. The statement is clear for n = 2. Hence, we assume the statement for n and
deduce the statement for n + 1. Let S be any A-algebra and
Gn1(X,Y) € S[[X, Y]}/ (X, Y)"*
an n + 1-truncated formal group law, and
Gn(X,Y) € S[X, Y])/(X,Y)"
its n-truncation. Let f,: R, — S be the unique homomorphism such that
foFn(X,Y) =G, (X,Y) mod (X,Y)"
and
frxlalp, (X) = la]l¢(X,Y) mod (X,Y)".
We can extend
fn: R, ZA[tl,...,tn_Q] — S
to a homomorphism
fr/L: Rn+1 = A[tl, A ;tn—l] — S
by sending ¢, 1 to 0. Then
fyll,*Fn+1a GnJrl

are two lifts of GG,, to an n + 1-truncated formal A-module. By Lemma there
exists a unique s € S such that

FrwFni1(X,Y) + sTaiv.n(X,Y) = Gy (X,Y) € S[[X, Y]]/ (X, V)"
and
FrslalFis (X) + shaivn (@) X" = ld]g,., (X) € S[[X, Y]}/(X, V)"
for a € A, where giy n, Raiv,n have the same meaning as in Proposition Define
frt1: Rug1 — S
by sending t,,_1 to s. Then
frni1+Fnp1(X,Y)

=fnt1(Frp1(X,Y) = th—1ldivn (X, Y)) 4+ sTaiv,n (X, Y)

=fl (F1(X,Y)) + sTaivn(X,Y)

=Gn11(X,Y)
using that F, 41 — t,—1C,(X,Y) has coefficients in R,. Similarly, we get that

for1x(lalp, 0 (X)) = [d]e, 0 (X)

for a € A. By Lemma [2.13] we see that this is also our unique choice for f,41. This
finishes the proof. O
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Theorem [2.16] implies that commutative n-truncated formal group laws can be
lifted to formal group laws. This is wrong for non-commutative n-truncated formal
group laws. Indeed,

FX,)Y)=X+Y +XY? e FQ[X,Y]/(X,Y)*
is a non-commutative truncated formal group law, which cannot be lifted as any
formal group law over F5[[X, Y]] is commutative, cf. [Laz55, Théoréme 1].

Unfortunately, the proof of Theorem [2.14]is a bit inexplicit as it does not provide
a very concrete formula for a universal (commutative) formal A-module

Fanie(X,Y) € Alt1, ta,.. ][X, Y]]

and its formal multiplication. From Proposition and Theorem [2.16| we at least
see that we can arrange that

Funiv(X,Y)= X +Y +t, 1Taiu n(X,Y) mod (t1,...,t,_2) + (X, V)" !
and
[a) sy (X) = X + to—1hdiv,n (@) X" mod (t1,...,t,—2) + (X, V)"
As a concrete example
Fui(X,Y) = X +Y + 61 XY + (XY + XY?) mod (X,Y)?
if A=7.

Exercise 2.17. We close this section with an exercise on the endomorphisms of
the additive formal A-module.

(1) Let A = Z or a discrete valuation ring with finite residue field, and R a
torsion free A-algebra. Show that
R — EndFGLA(R)(@a), re—rX

is an isomorphism.
(2) Let A be a complete discrete valuation ring with finite residue field & of
characteristic p and cardinality ¢, and let R be a k-algebra. Show that

R{{r}} = Endpcr,(r)(Ga), Y _rim' > Y mXT
1=0 =0

is an isomorphism, where R{{7}} denotes the non-commutative ring of
power series in 7 and coefficients in R such that

Tr=rl.1
for r € R.

2.4. Proof of the lemma of Lazard and Drinfeld. We now turn to the proof
of the crucial, yet technical Lemma [2.13]
Given an A-module M we want to understand the A-module

Dy, a(M)
given by I'(X,Y) € M[X,Y] = M ®4 A[X,Y] homogeneous of degree n, h(a) €
M, a € A, such that the equations
(1) I(X,0)=0,T(0,Y) =0,
2) (Y, 2)+T(X,Y + Z) =T(X,Y) + T(X + Y, Z),
() I(X,Y) =T(Y, X),
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(4) h(a)( X" +Y") +a"T(X,Y) =h(a)(X +Y)" +al'(X,Y),
(5) ha+b)X"™ = h(a)X™ + h(b)X™ 4+ T'(aX,bX),
(6) h(ab) = ah(b) + h(a)b™
are satisfied for a,b € A.
Let
Yn € Dn,A(A)
be the collection
{Bn(X,Y),(a" —a),a € A}.
If A=7Z Lemma reduces to the following statement.
Lemma 2.18. If A =7, then for any abelian group M we have
Dy z2(M) = Ydivn - M

for vaiv,n given by the collection {C,(X,Y), (ay;fa),a € A}.

Here,

Co(X,Y) = diBn(x; Y)

with d,, = 1 if n is not a prime power and p if n = p” for some prime p as in
Section 2.31
Before proving Lemma [2.1§] let us deduce Lemma [2.13] from Lemma [2.18]

Lemma 2.19. Let A be a complete discrete valuation ring with finite residue field
k having q-elements. Let K := Frac(A) be the fraction field of A. Assuming
Lemma[2.18 the second statement of Lemma holds true.

Proof. We first prove the existence of vaiv.n € Dn,a(A) if n is a power of g. Let
p := char(k). Then
B,.(X,Y) =pC,(X,Y)
and 7 | p. Moreover, Frob,: k — k is the identity, which implies that
7| (a" — a)

for alla € A asnisapower of g. Now, let M be an A-module and {I'(X,Y), h(a),a €
A} an element in D,, 4(M). We know that

(a" —a)[(X,Y) = h(a)B,(X,Y)
by equation (4). If n is not a power of p, then by Lemma we know
NX,Y)=B,(X,Y)m
for a unique m € M as d,, is invertible in A in this case. Therefore we get
(a" —a)m = h(a)

as desired. Next assume that n is a power of p, but not of g. Then there exists
a € A such that

a” —a ¢ (7).

Set

Then for each b€ A
ah(b) + b"h(a) = h(ab) = h(ba) = bh(a) 4+ a™h(b),
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which implies
h(a)

h(b) = (b" — b)m

= (0" —b)m
for each b € B. Moreover,
I'(X,Y) = Bo(X,Y)m
as we saw above. Finally, assume that n is a power of g. Set
h
m:= 7_(?) .
=t —1
Substracting
m - "Ydiv,n
from the data {T'(X,Y),h(a),a € A} reduces us to the case that h(r) = 0. We
have to show that I'(X,Y) = 0 and h(a) =0 for a € A. We then know that

n h(m
Th(b) = (b" — b)w(l)_l) ~0
for b € B. This implies
h(mb) =0

for b € B. In particular, h(p) = 0 as 7|p. By Lemma i.e., the case A =Z, we
know that
[(X,Y) = Co(X,Y)m/
for a unique m’ € M and that
h(p) = (p" ! = 1)m".

As p"~! — 1 is a unit in A we can conclude that m’ = 0. We know wh(a) = 0 for
all a € A thus

n—1

b"h(a) = bh(a)
for all b € A as n is a power of ¢. In particular, h defines a derivation A — M with
image in the m-torsion M[n] of M. Because h(wb) = 0 for all b € B, this derivation
factors over a derivation

h: k — Mlr].
Any such derivation is trivial as k is a perfect field. Indeed, each x € k admits a
p-th root y and

>

(x) = py?*~h(y) = 0.
This finishes the proof. (I
Thus, we have reduced to the case that A = Z. Let us show that in this
case only the equations 1),2),3) are relevant. Let M be an abelian group and
let T'(X,Y), h(a),a € A, be an element of D,, z(M). If we write
NX,Y)= > mX'y"™
0<i<n

then the first three imposed relations reduce to

m; = Mmp_;,0 <1 <n,

<j + k> <z + j)
. m; = . M5
J J

and



LECTURE NOTES ON LUBIN-TATE SPACES 63

for 0 < 4,5,k <n,i+ 7+ k =mn. The forth relation becomes

for 0 < 7 < n while the fifth relation becomes
h(a+Db) =h(a) +h(b)+ > ma'b"™".
0<i<n
Assume now that
1 /n :
I'(X,Y)=mC,(X,Y) = m—( . ) Xiy"!
KX =nC () = $ g (7)

for some necessarily unique m € M. Then we get by induction

1
h(a) = a(a" —a)m
Indeed, h(1) =0 and
h(a+1)
1 .
0<i<n I \?

1 n 1 n n
:d—(a —a)m—l—m(a((a—kl) —a" —1)

——((@+1)"—a—1)m

n

3

=

using induction on a. Similarly, one checks the statement for a < 0 using downward
induction starting with the case ¢ = 0. In particular, Lemma follows from
Lemma [2.20)]

Lemma 2.20 (Lucas’ theorem). Let M be an abelian group and let m; ; € M,0 <
1,7 < n,i+j =n, satisfying

Mp,0 = Mo = 0,m4 5 = My,
forall0<i,5 <n, and

i+ j+k
j Mitjk = j Mij+k

for all0 < 4,5,k <mn. Then there exists a unique m € M, such that

1 /n
m; = Miypn— = df i m
n

For the proof we follow [LurlQ, Lecture 3].

for 0 <i<n.

Proof of Lemma[2.20L Uniqueness follows from the fact that the greatest common
divisor of the coefficients of C,,(X,Y") is 1, cf. Lemma[2.21] We can assume that M
is finitely generated by considering the subgroup generated by the m; ;,0 < 7,5 < n.
Then M is isomorphic to the kernel of the map

M@ZQ@HM@)ZZP*}M@ZQIM (a7b)'_>a7ba

p
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where the product runs over all primes p and we identified
(M &z Zp) @z, Qp = M @7 Q, = (M ®z Q) ®q Q.

By uniqueness of M we may therefore replace M by M ®z Z, or M ®z Q and
assume that M is a Z,)-module for some prime p. The assumption on the collection
{m;}o<i<n implies that if m; = 0 for some 0 < i < n and k =i + j < n satisfies

(lj) # 0 mod p,

then my = 0. Indeed, (’z) is a unit in Z(p) in this case. By Lemma (Z';J) e
0 mod p if in p-adic expansion the sum i 4+ j can be calculated without carrying,
i.e., the p-adic digits in i 4 j are larger than the p-adic digits of ¢ (or j) First let us
assume that n = p" for some h > 1. Lemma implies that

1 h
< ;:_1> % 0 mod p.
pP\p

Hence replacing m; ; by m; ; + al% (")myyn-1) for a suitable a € Z,) we may assume
that m,n-1 = 0. Let

ph—l < k <ph.
By Lemma [2.2]]
k
Z 0 mod p
W*)

as the sum k = p'~! + (k — p"~!) is computed without carrying in the p-adic
expansion (as k < (p—1)p"~1) and k > p"~1. As we saw above this yields mj, = 0.
If 0 < k < p'~!, then

mg = mpyh_p, =0

as p"~! < p" — k < p". This finishes the proof in the case that n = p" is a power

of p. Next assume that n is not a power of p and write n = p"n/ with n’ > 1 and
p{n’. By Lemma we know that

(;) # 0 mod p.

As above we may then assume that my» = 0. If h > 1, then m,_,» = 0 by

symmetry. By Lemma [2.27]
h—1
n—p
(5~ p-s) 7000

asn—p ! =n—ph+(p—1)p"~! can be calculated in its p-adic expansion without
carrying. From the remark made at the beginning of the proof we get that

P

mnfphfl == 0,

from which we deduce that Mph-1 = Myn = 0 if h > 1. Now let 0 < 4,5 < n with
t+ j = n. We need to see that m; = 0 or by symmetry equivalently m; = 0. By
assumption we have

o0
n= ahph + Z a;p’
i=h+1
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in p-adic expansion with 0 < a;, < p. Either ¢ or j must have a non-trivial p-adic
digit in front of p"~1 (only possible if h > 1) or p. Assume this is the case for i
and the coefficient in front of p". By Lemma we can conclude that

(pzh> # 0 mod p

and thus m; = 0 because m,. = 0 and the remark made at the beginning of the
proof. If the p-adic digit in front of p"~1 (if h > 1) of i is non-zero, then similarly

(p”i*) # mod

and thus m; = 0 using myn-1 = 0. This finishes the proof. O

oo ) oo R
Lemma 2.21. Let p be a prime. Leta= ) a;p",b= Y b;p* € Z>( be two natural

=0 =0
numbers in their p-adic expansion, i.e., a;,b; € {0,...,p—1}. Then

(1) =TLG) o

Moreover, for h > 1 and we have %(pf}il) % 0 mod p.

Here, (Z) =0ifb>aand (8) =1 Lemma can be used to give a proof that

d - 1, if n is not a prime power
" p,if n is a power of the prime p.

h .

Namely, if n is not a power of p, then write n = > a;p* with a5 # 0, and set
i=0

i:=app",j:=n—i>0. Lemma implies that (%) is not divisible by p.

Proof. Consider the set
aop a a
(9) S=[[zn°u]]zm u]]z/ru...
k=1 k=1 i=1
of cardinality a with its evident action of the group
o0
a = [@m).
i=0

Let T be the set of subsets of S of cardinality b. Then §T' = (}) and G acts on T
As G is a p-group

47 = $7° mod p,
where T is the fixed point set of G. But a b-element subset S’ C S is fixed under
G if and only if it is a union of G-orbit. From ((9)) we can conclude that there are

;)

possible choices for choosing orbits, such that their union has b-elements. This
proves the first assertion. Let us prove that

1/ p* >
- 0 mod p.
P <p"‘1 *
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This is clear if h =1 as then (¥) = p. For h > 2 note that

(X+Y)P =X 1 Y?" mod p,
which implies
(X +Y)" = (X?"" + """ )P mod p?

as the p-th power map is p-adically contracting. From here we can conclude

-1

Con(X,Y) = Cp(XP" Y"1 = (Cp(X, V)P # 0 mod p

h—1

and by looking at the coefficient of X?" 'Y ®-Dp" " = (xyr-1)p"""

1/ p* 1/p
- = - 0 mod p.
P (phl} p (1) 7 0modp
This finishes the proof. O

2.5. Consequences for formal A-modules. We let again A denote Z or a dis-
crete valuation ring with finite residue field (in which case we fix a uniformizer

).

For n > 2 let
Yns Vdiv,n S DnA(A)
denote the elements from Lemma with corresponding data
{Bn(Xa Y)7 (an - a)7 ac A}7 {Fdiv,n(Xa Y)) hdiv,n(a’)a ac A}

satisfying the equations in Lemma In the following we fix an A-algebra R.
Most of the following results rest on the following lemma, cf. [VIa76l Propositon
1.5.].

Lemma 2.22. Let F € R[[X,Y]]/(X,Y)""! be an n + 1-truncated formal A-
module, let r € R and let

on(X) = X +rX" € R[[X]]/(X)"*.

Then
Pn (Flpn(X),0n(Y))) = F(X,Y) = rBu(X,Y) mod (X,Y)"*!
and
¢n ([alr(pn(X)) = [a]p(X) = r(a" — a)X™ mod (X,Y )"
fora € A.

Here, o, 1(X) € R[[X]]/(X)""! denotes the inverse R-algebra morphism to
X = on(X).
In other words, Lemma explains how we can change truncated formal A-

modules by changing the coordinate, namely exactly by some multiple of ~,,.

Proof. We calculate
F(eon(X), en(Y))
=F(X4+rX"Y +rY")
=F(X,)Y)+rX" +rY"
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and
Spn(F(X7Y) - TBn(X’ Y))

=p,(F(X,Y)) —rB,(X,Y)
=F(X,Y)+r(X +Y)" —rB,(X,Y)
=F(X,)Y)+rX" +rY"™

If a € A we get

[a] F(¢n (X))
=la]p(X) + arX™
and
en(lalp(X) —r(a” —a)X™)

=en(la]p(X)) —r(a" —a) X"

=lalp(X) +ra" X" —r(a"” —a) X"

=la]p(X) + raX"™.
This finishes the proof. U

Let K be the fraction field of A.

Lemma 2.23. Assume that R is a K-algebra, and F € R[[X,Y]] a formal A-
module. Then there exists a unique power series logp € R[[X]] with logp(0) =
0,log’=(0) = 1 and

log (F(X,Y)) = logp(X) +logp(Y)
and
logp([a]r(X)) = alogp(X)

for a. Moreover,
Endpar, (r) (Ga) 2 R, g(X) = ¢'(0)

In other words, if R is a K-algebra, then each formal A-module over R is iso-
morphic to the additive one.

Proof. By Exercise [2.1
Endrar, () (Ga) = R, g(X) = ¢'(0)

which implies uniqueness of log,. The existence of logy for the universal formal
A-module was implicitly proven in Proposition 2.15] Alternatively, it follows from
Lemma Namely, as R is a K-algebra ~, generates D, 4(R) by Lemma m
By Lemma we see that we can iteratively find an isomorphism F' = @a. (Il

Let us now fix a prime p, and assume that R is Z,)-algebra. We may then replace
A by A®gz Z,) if we consider formal A-modules over R. Hence, assume from now
on that A is a (not necessarily complete) discrete valuation ring with finite residue
field k of characteristic p and cardinality ¢. In this case we will analyze a formal
A-module by analyzing its endomorphism [r] for 7 € A a fixed uniformizer.

Recall that in Section [2.1] we introduced the height of a formal A-module over a
field extension k' of k. Namely, F' € k'[[X,Y]] is of height A if and only if

[7]p(X) = aX?" mod (X)qh+1
with a € k.
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Let
Funiv(X,Y) € A4[[X, Y]] = Aty £, - J[[X, Y]]
be a universal formal group law as constructed via Proposition[2.15] Then we know
that for h > 1
[r]F(X) = tqh,l(wqh_l - 1)th mod (m,ty,...,tgn_o) + (X, Y)qhJrl
because hgjy gn (7) = 7" =1 _ 1. Set
v =T
and ‘
v; = (70T = Dty
for ¢ > 1. Note that

AA = A[to,tl, ce ,tq_g,vl,tq, ce ,tqi,Q,Ui,tqi, e ]

asmd 1 — 1€ AX fori > 1.
Now we generalize the notion of a height to an arbitrary A-algebra R.

Definition 2.24. Let h € Z>o U {oo}. Let F € R[[X,Y]] be a formal A-module.
Then F is called of height > h (resp. height h) if

[7]p(X) =0 mod (X")
(resp. h h
[7]F(X) =rX9 mod (X)? T
with r € R™ ).

A formal A-module over R is of height 0 if and only if R is a K-algebra. Equiv-
alently, F' is of height > 1 if and only of 7R = 0, i.e., R is a k-algebra. If F' is of
height 0, then by Lemma [2.23

F=Gyp
Clearly, the formal A-module F}, € k[[X, Y]] constructed in Lemma [2.4]is of height
h > 1. If R is a k-algebra, then the formal A-module

~

Ga,R

is of height oo.
The following lemma implies that Definition [2.24]is invariant under isomorphisms
of formal A-modules and that it does not depend on the choice of Fypiy-

Lemma 2.25. Let R be a k-algebra, F' € R[[X,Y]] a formal A-module and 1 <
h < oco. Then the following are equivalent:

(1) F is of height > h,

2) [7]F factors over Frobf;: F@) S F, of Section

3) F is isomorphic to a formal A-module F' such that [x]p(X) = 0 mod (X)7"+,

4) if F = fuFuniv for f: Ag — R, then f(v;) =0 fori <h,

5) F is isomorphic to G modulo (X, Y)qh, i.e., there exists o € X + X2R[[X]]
with ¢'(0) € R* such that

P(F(X,Y)) = (X) + o(Y) mod (X,Y)"",

(
(
(
(

and
h

¢(lalr (X)) = ap(X) mod (X)*
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In particular, F is of height co if and only if [7]p(X) = 0 if and only if F = @a,R~
Proof. 1) = 2) follows from the proof of Lemma [2.2] 2) = 1) is clear as Frob! is

represented by the series X9¢". As 2) is invariant under isomorphisms we see that 3)
is equivalent to 1). Alternatively, we could argue that substituting X by some power
series (X)) with ¢(0) = 0,¢’(0) preserves the ideal (X)qh. From the argument for
1) = 2) we see that if [7]r(X) = 0 mod X", then [7]r(X) = 0 mod (x) if
q' < n < ¢t Moreover, if [7]p(X) = 0 mod (X9, then we can conclude that
[7]#(X) = v; X9 mod (X)? 1. This implies that 4) is equivalent to 1). As
[W]GG(X) =7r-X=0
we see that 5) = 3). Thus assume that F is of height > h. We may argue via
induction on m < ¢" that we find ¢(X) € X + X2R[[X]] with
(F(X,Y)) = o(X) + ¢(Y) mod (X,Y)™
and similarly for the formal multiplication. The case m = 2 is clear and we may
assume that
F(X,Y)=X+Y mod (X,Y)™.
By Lemma and Lemma we know that
FX,)Y)=X+Y =rTgiym(X,Y) mod (X,Y)"*!
and
[a]p(X) = aX + rhgiv.n(a) X™ mod (X)™T!
for a € A. If m is not a power of ¢, then by Lemma we may take
p(X)=X —rX™
If m = ¢* with 4 < h, then we know that
[7]r(X) = v, X9 = r(ﬂ'qi_l - 1)Xqi = X7 mod (X)m+t,
As v; = 0 this implies that » = 0 and automatically.
F(X,Y)=X+Y mod (X,Y)"
This finishes the proof. (I

Recall that in Exercise we computed the endomorphisms @a over some
k-algebra R. Thereby the infinite height case is completely understood.

If A is of characteristic p and R any A-algebra, then Lemmal[2.25]implies that the
underlying formal group law of each formal A-module F' € R[[X,Y]] is isomorphic
to @a. Indeed, as

[p]r(X) =0
as p = 0 € A, the underlying formal Z,)-module is of height oco. This does of
course not imply that the formal A-module F' is of height oo.

Recall that we constructed for h € Z>; in Lemma a formal A-module F} €

E[[X,Y]] of height h such that

[m]m, (X) = X9 € k[[X, Y]].

It is nearly true that each formal A-module over a k-algebra R of height A is
isomorphic to Fj. It is true after passing to a faithfully flat ind-finite étale R-
algebra. Let us give the relevant definitions.
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Definition 2.26. Let f: R — S be a map of arbitrary rings. Then f is called finite
étale if S is a finite projective R-module and the trace bilinear form

Trg/p: S xS — R,

which exists by finite projectivity of S over R, is non-degenerate, i.e., its adjoint

S — Hompg(S, R) is an isomorphism. We call f ind-finite étale if S = ligSi is a

filtered colimit of R-algebras S;, which are finite étale over R. We call f ﬁat if fis
S is a flat R-module, and faithfully flat if f is flat and S ®r M = 0 implies M = 0
for any R-module M .

Let us give examples of (ind-)finite étale morphisms.

Example 2.27. (1) Let R be any ring and assume that f(X) € R[X] is a
monic polynomial with derivative f'(X) € R[X] such that

(f(X), f'(X)) = R[X].
Then
S:= R[X]/(f(X))

is a finite étale R-algebra. Indeed, S is finite free over R and we have to
see that the adjoint of the trace bilinear form

S — Hompg(S, R)

is an isomorphism. This amounts to checking that the determinant of a
matrix is invertible. But this can be checked after base change to fields,
and then to algebraiclly closed fields. Thus we may assume that L = R
is an algebraically closed field. In this case the condition (f(X), f' (X))
means that the polynomial f(X) is multiplicity free. This implies that S is
a finite product of copies of L. But then the trace bilinear form is clearly
non-degenerate.

(2) By base change to an algebraically closed extension it is easy to see that if
R = L is a field, then a commutative finite dimensional L-algebra S is finite
étale if and only if it is a product of separable field extensions. In particular,
if L is separably closed, then each (non-zero) finite étale L-algebra S admits
a retraction S — L as L-algebras.

Let us say that a formal A-module F' € R[[X,Y]] of height h € Z>; over a
k-algebra R is normalized if

[7]r(X) = X"
As F([r]p(X), [7]r(Y)) = (70 (F(X,Y)) and [x]r(a] (X)) = [a]r((r]p(X)) for
a € A, it follows that a normalized formal A-module and its formal multiplication
have coeflicients in the subring

R™P =1 . (p e R| 27" =2} CR.

For example, the module F}, € k[[X,Y]] from Lemma is normalized. More
generally, we have the following.

Lemma 2.28. Let R be a k-algebra, h € Z>1 and F € R[[X,Y]] a formal A-module
of height h. Then there exists a faithfully flat ind-finite étale R-algebra S such that
F&gS is isomorphic to a normalized formal A-module F' € S[[X,Y]].
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Proof. By Lemma [2.25 we can assume that
F(X,Y) =G, mod (X,Y)7".
By assumption
[7]r(X) = aX?" mod (X)qthl
with a € R*. As ¢" =0 in R and a € R* the R-algebra
S = R[T)/(T" " - q)

is finite étale over R by Example After replacing R by S we may therefore
assume that there exists b € R with b¢ ~! = a. Set

o(X)=b"1X.
Then ., .
¢ ([mr(p(X))) = X7 mod (X)*+!
and we may replace F by ¢~} (F(p(X),¢(Y))) and assume that
[7]p(X) = X" mod (X)7" 1.
Let m > ¢". By induction we may assume that
(7] r(X) = X7 mod (X)™.

By Lemma we know that [7]p(X) = g(X ") for some power series g. Hence,
we only have to deal with m = k¢ with k > 2. In this case write

[7]#(X) = X9 + aX*" mod (X)™*1.

If we set
o(X) =X —bX",

then
e([r]r(¢~ (X))

=[rlp(e ! (X)) — bX*

=Xk pt" xR g g xRt pxke

=x*" 4+ 5" —b+a)x*"
mod (X)k?"+1 ag

¢ HX) =X +bX" mod X*T1.
The R-algebra S := R[X}/(th — X +a+1) is finite étale over R. Hence, we may
enlarge R an assume that there exists b € R with
b —b+a+1=0.

This concludes the proof. O

We can now prove a generalization of the previously announced Theorem [2.5

Theorem 2.29. Let h € Z>1 and R a k-algebra. Any two normalized formal
A-modules Fy,Fy € R[[X,Y]] of height h are isomorphic. In particular, any two
formal A-modules of height h become isomorphic over a faithfully flat ind-finite
étale R-algebra, and if R = k' is a separably closed field extension of k, then two
formal A-modules are isomorphic if and only if they have the same height.
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Proof. This follows from Lemma[2.22] Lemma[2.28|and the fact that every faithfully
flat ind-finite étale algebra S over some separably closed field k' admits a retraction
S — k’. Namely, we may assume that

RFrobqh:Id =R

which implies that for p(X) € X - R[[X]] with ¢'(0) € R*, the R-algebra automor-
phism
¢: R[[X]] = R[[X]], X — ¢(X)
transforms normalized formal A-modules to normalized A-modules. Using the usual
arguments the crucial point is to see that if Fy, F5 are normalized formal A-modules
of height h and
Fi(X,Y)=F(X,Y) mod (X,Y)™
for some power m = ¢*,i > 0, of ¢, then
Fi(X,Y) = F(X,Y) mod (X,Y)™
We know that
[7]F. (X) = [7]F, (X) + aX™ mod (X)™*!
for some a € R. As F, F, are normalized we get a = 0 because hqiy m (7) = 1—7
is a unit in R. (]

m—1

Lemma [2.25] and Lemma [2.13] imply that there exists a normalized formal A-
module F}, € E[[X,Y]] of height h € Z>1 with

Fu(X,Y)=X+Y - 20, (X, V) mod (X,v)d"+
™

and .
al

—a
X" mod (X, V)4 L,

™

We shortly discuss another structure of the Lazard ring, namely its grading.

Let

[a]p, (X) =aX —

G (Alg,) — (Grp), R— R*.
be the multiplicative group over A. Then G,, acts on the functor
FGL4(-).

Indeed, given R € Alg, and a formal A-module F € R[[X,Y]], [a]r(X) € R[[X]],a €
A, then

rF(X,Y) :=r"'F(rX,rY),[al,r(X) :=r"ta]r(rX),a € A,
is another formal A—moduleﬂ If F is classified by the map
gr: Ay =2 Afty,ta,...] & R,
then by Proposition [2.15] and the proof of Lazard’s theorem we see that
gr.p(ti) =1'gr(ts)
as
T i1 (P X, 1Y) = vt Tai i1, 7 ihaiviv1 (@)r ™ X = pihgy i1 (a) XE.
for i > 1,a € A. In other words,
Ag = Alty, ta,.. ]

9This is a special case of the action of the group G, which was discussed after Exercise
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as graded rings if ¢; has degree i (and A 4 its graduation coming from the G,,-action
on FGL,4).

To complete the discussion of formal A-modules of height h € Z>; we have to
calculate the endomorphism

Endpar,, (r) (F)

for such a formal A-module F. For this we may assume that A is complete. By
Theorem [2.29] it suffices to consider the case that F is normalized and describe

EndFGLA(R) (F)

The general case will be given by twists with a torsor under the functor of units in
Endpar,, (r)(F). As F is assumed to be normalized each endomorphism of F' over
R is already defined over the subring

RFrobqh:Id CR
Let us discuss the structure of this subring. For a > 1 we let k, /k be an extension

of degree a over k (which is unique up to isomorphism).

Exercise 2.30. If R is a k-algebra of finite type, then RIrobgn=1d jg isomorphic to
a finite product of k,’s for 1 < a < h. The number of factors equals fmo(Spec(R)).

Writing R as a colimit of k-algebras of finite type, we can conclude that if R is
a kp-algebra, then

RIrobgn=1d ~ Hom,s(mo(Spec(R)), k)
with
mo(Spec(R))

the profinite set of connected components of Spec(R), cf. [Stal7, Tag 0906].

Note that S := R'™Par=1d jg 4 perfect ring, i.e., its Frobenius is bijective. In
particular, there exists a m-complete, m-torsion free A-algebra A(S) unique up to
unique isomorphism with a fixed isomorphism

Ajm =S,

cf. [FF18, Proposition 2.1.7.]. For example, A(k,) is isomorphic to the ring of
integers in the unramified extension of K of degree a. In general, each element in
A(S) can be represented as a power series

Z[Si]ﬂi

with s; in S and [—]: S — A(S) the Teichmiiller lift, which can be constructed as in
Exercise The ¢-Frobenius on S lifts uniquely to an A-algebra homomorphism

o: A(S) — A(S),
which is functorial in S. We can give the desired description of
Endrer, () (F)

if F € R[[X,Y]] is normalized. By Theorem [2.29] (and Lemma[2.4) we may assume
that F' and its formal multiplication are defined over k.
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Lemma 2.31. Let R be a k-algebra and set S := R™ =", Let F € R[[X,Y]] be
a normalized formal A-module with coefficients in k. Then
Endpar,, (r)(F) = A(S) @A D ... & A(S)Imh—!
with TI(X) = X satisfying 1" = 7 and
all = o (a)
for a € A(S).
If R =k, then this lemma was Exercise [2.6

Proof. We may assume R = S as F' is normalized and therefore its addition, formal
multiplication and endomorphisms are already defined over S. Replacing A by
A(S) (and ¢ by ¢") in Lemma the same proof works, cf. Remark and
Theorem In particular, we can deduce the existence of a natural injective
homomorphism
t: A(S) = Endu(F).

As F is defined over k it is clear that II(X) = X7 defines an endomorphism of F.
As F is normalized it is clear that

Moreover, for a € A(S)
t(a) oII(X) =Tl o(o(a))
by definition of II and ¢. In particular, ¢ extends to a morphism
v AS) B AS & ... e AST" ! — Endpr,, (g (F)

of A-algebras. Let f: FF — F be an endomorphism over S. After subtracting some
t(a) with a € A(S) we may assume that f'(0) = 0. By Lemma [2.2] we see that we
can write

f=gell
for a morphism g: F — F of formal A-modules. Continuing we find that we can
write

f= L(Z a;IT%)
i=0

for some a; € A(S). Replacing IT"* by 7 we even get a unique expansion of the form

h—1 _
f=ud alr)
=0

with ag, ...,an—1 € A(S). We use that the A-algebra Endpqr, , (5)(F) is m-complete
and 7-torsion free. This last statement follows easily using that Endggr, , (g (F) C
R[[X]] is X-adically closed.

If R = kp, then Endpgr,, (&,)(F) is isomorphic to the maximal order of the
division algebra of invariant 1/h over K = Frac(A), cf. Section [1.10}

Exercise 2.32. Assume that A is any field, that R € Alg,, and F' is a formal
A-module law over R (in the sense discussed in beginning of Section . Show that

F~G,
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as formal A-modules.
Hint: Reduce to F(X,Y) =X 4Y and char(A) =p > 0. Then consider

~

vt A — Endpar(r)(Ga) = R{{7}}

with R{{7}} as in Ezercise[2.17 Now prove by induction on i that up to isomor-
phism one can arrange t(a) = a mod ()" for all a € A.
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2.6. Proof of representability of Lubin-Tate spaces. We are now ready to
start the proof of the representability of the Lubin-Tate spaces. Let us recall the
setup. We suppose that A is a complete discrete valuation ring with finite residue
field k of characteristic p, and ¢ := k. Let m € A be a fixed uniformizer. Let

Fy € k‘HX, Y]]
be a formal A-module of height h. Let

be the category of A-algebras R such that 7 is nilpotent in R.

The results (and proofs) in this section work the same if we replace k, F}, by
any perfect k-algebra k" and Fj, € K'[[X, Y]] any formal A-module of (exact) height
h € Z>1 and replace accordingly Nilp, by the category Nilp 4,/ of A(k")-algebras
R with 7 nilpotent in R and A[[X1,...,Xn-1]] by AK)[[X1,..., Xn-1]], for A(K)
the unique m-complete, m-torsion free A-algebra with A(k")/m = k’. For simplicity
in notation we stick to the case k' = k.

Let us recall the definition of the Lubin-Tate space associated with F},, cf. Sec-
tion

Definition 2.33. For R € Nilp, we set
Mg, (R)
as the set of x-isomorphism classes of formal A-module laws F € R[[X,Y]] such
that F' = F, € R/I[[X,Y]] for some nilpotent ideal I C R with = € I. The functor
Mp, : Nilp4 — (Sets)
is called the Lubin-Tate space (for Fy,).

Let us construct a (non-canonical) morphism
n: Spf(A[[Xl, . 7Xh71H) — MFh,'
For this let
th : AA — k
be the morphism classifying the formal A-module Fj, € k[[X,Y]]. As F}, is of height
h we know
gp,(vi) =0, i=0,...,h —1.
Therefore, we can choose a morphism
gF, : AA — A[[Xl, - ,Xh,ﬂ]
with
th(’Ui) :Xi; ’L:1,7h—1
lifting gp, along the surjection A[[Xy,...,Xp 1]] — k sending X; to 0 for i =
1,...,h— 1. For each n > 1 the formal A-module over
A[[X17 cee >Xh*11]]/(7rn7 X{Iu ey X;Lbfl)
is a x-deformation of F} by construction, and this defines by the Yoneda lemma a
morphism
M Spec(A[[ X1, ..., Xp_1])/ (7™, XT, .., X)) = Mp,.
Passing to the colimits of the compatible morphisms 7,, yields the desired morphism
n: Spf(A[[X1,..., Xn-1]]) = Mp,.
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Definition [2.33] is now implied by the following theorem, which will be the main
result of this section and its proof will occupy us till the end of this section.

Theorem 2.34 (Lubin-Tate/Drinfeld). The above morphism
n: Spf(A[[ X1, ..., Xp_1]]) = Mp,.
is an isomorphism.
The following lemma will help to get rid of the *-isomorphisms.

Lemma 2.35. Let R — S in Nilp, be a surjection with nilpotent kernel, and
F € Mg, (S) be x-deformation of Fy,. Then the fiber of

MFh( ) - MFh( )
over F is given by the set of equwalence classes of formal A-modules F € R[[X,Y]]

reducing to F € S[[X,Y]], where F\,Fy are called equivalent if there exists an
isomorphism f: Fy — F5 reducing to the identity in S.

Proof. Given formal A-modules F1, F, € R[[X,Y]] lifting F, then by Lemma -
each x-isomorphism f: Fy — F, reduces to the identity in S. Furthermore, if
F € R[[X,Y]] is a formal A-module and g: F&rS = F a x-isomorphism, then we
can lift the power series g € S[[X]] to a power series h € R[[X]]. As R — S has a
nilpotent kernel, the power series h defines an automorphism of R[[X]]. Replacing
F by h(F(h=Y(X),h1(Y))) we may then assume that F(X,Y) (and its formal
multiplication) reduces to F'. O

The functor My, satisfies the (formal) Mayer-Vietoris property and is formally
smooth as we know explain. Let

G: Nilp, — (Sets)
be a functor.
Definition 2.36. The functor G satisfies the (formal) Mayer-Vietoris property if
for any morphism Ry — S, Ry — S in Nilp 4 with Ry — S surjective with nilpotent
kernel the natural morphism
G(R1 xs R2) = G(R1) Xg(s) G(R2)

is a bijection. The functor G is called formally smooth if for any surjection R — S
in Nilp 4 with nilpotent kernel the map

G(R) — G(R/I)
18 surjective.
Clearly,
Spf(A[[X1,...,X,]]) = Homy s (A[[ X1, ..., Xn]],—): Nilpy — (Sets)

satisfies the Mayer-Vietoris property and is formally smooth. As a prerequisite
to Definition we show that the Lubin-Tate spaces My, satisfy the (formal)
Mayer-Vietoris property and are formally smooth as well.

Lemma 2.37. The functor
M, : Nilp, — (Sets)
satisfies the (formal) Mayer-Vietoris property and is formally smooth.
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Proof. Let p1: Ry — S, pa: Re — S be morphisms in Nilp 4 with ¢; surjective with
nilpotent kernel. Set R := Ry Xg Ry and let m;: R — R; the respective projections.
We have to prove that the morphism

M, (R) = Mg, (R1) X g, (5) Mp, (R2)

is a bijection. For this it suffices to see that for each *-deformation Fy € Ry[[X, Y]]
of F}, the fibers N1, Ny of

MFh,(R) - MFh, (RQ)
and

MFh,(Rl) - MFh(S)
over F' € Mp, (Ry) resp. 2. F € Mp,(S) are in bijection (via ¢1). Note that
R — Ry, Ry — S are surjections with nilpotent kernels. By Lemma we can
conclude that N identifies with isomorphism classes of formal A-modules G €
R[[X,Y]] with second component F, while Ny identifies with isomorphism classes
of formal A-modules G’ € R;[[X,Y]] reducing to ¢2 .F. By the definition of the
fiber product

R = R1 Xg RQ
we see that ¢ induces a bijection N; — Ny as desired. The formal smoothness
of Mp, follows directly from Lemma and Theorem Indeed, Lazard’s
theorem implies that formal A-modules can be lifted along any surjection of rings.
[l

Lemma [2.37) explains why we have to put this strange condition on the existence
of the nilpotent ideal I in the definition of Mp,. The functor sending R € Nilp 4
to the set of F' € R[[X,Y]] reducing to Fj, module 7 (taken up to isomorphisms
reducing to the identity mod 7) does not satisfy the Mayer-Vietors property as in
general the morphism

(Rl Xg RQ)/(TF) — R1/7T XS/W R2/7T

is not injective.
We first reduce the question whether

nr: SPI(A[[Xy, ..., Xu]])(R) = MF, (R)
is a bijection for any R € Nilp, to the case that R has a particular shape.

Lemma 2.38. Assume that
nr: SPE(A[[X1, ..., Xp]])(R) = Mp, (R)

is a bijection for any local A-algebra R with residue field k whose mazximal ideal
contains m and is nilpotent. Then ng is a bijection for any S € Nilp 4.

In the more general situation with k replaced by any perfect k’-algebra, the
conditions on R have to be replaced by the conditions that Ail(R) is nilpotent,
contains 7 and that ¥’ — R/Nl(R) is an isomorphism. The proof of Lemma
works as well (even though the ring S” appearing there need not be a subring of S
anymore).

Proof. Let S € Nilp, and F' € S[[X,Y]] be a x-deformation of F},. By definition
there exists a nilpotent ideal I C S containing 7 such that

F = Fj, mod I.
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In particular, F' has coefficients in the subring
S =k Xs/1 S.
of elements in S reducing to some element in k& C S/I. Note that S’ is a local
A-algebra with nilpotent maximal ideal k xg,; I = I containing 7. In particular,
F lies in the image of
MFh(S/) — MFh (S)
and thus 7g is surjective as 7g- is assumed to be surjective. Now assume that
91,92 € SPE(A[[ Xy, ..., Xn1]])(S)

map to the same element in Mg, (S). Let I C S be the ideal generated by
m, Xi,91(X;) — g2(Xp-1),i=1,...,h — 1. Then I C S is nilpotent, and the com-
positions

Al[Xy, .. X)) 2 85— §/1
agree for j = 1,2. Let again

S =k xgS.

Then g1, go factor over morphisms

g1, 95 Al[X1,..., Xn1]] = 9.

Using that ng is injective, it suffices to see that the images of g1, g5 in Mg, (S”)
agree. By Lemma [2.37]

MF;L(S/) = MF;L(k) ></\/th(S/I) MF;L(S)v
and both components of ng/(g}) = ns(g5) agree. This finishes the proof. g

Let S be any ring, and let M be any S-module. Then we define the S-algebra
S[M)]
with underlying S-module S & M and multiplication
(s,m)(s’,m’) := (ss',sm’ + s'm)

for s,s' € S;m,m’ € M. Note M C S[M] is an ideal with M? = 0. We sometimes
will write S[M] = S @ eM with £2 = 0.

Lemma 2.39. Let M be any k-module. Then the map
ki) s SPE(A[[X, -, X |]) (R[M]) = Mg, (k[M])
is a bijection.
Proof. The LHS is given by the set of continuous morphisms
fA[Xq, .o Xnoa]] — K[M].
As M? = 0, this set identifies with
Homy, ((X1,...,Xn_1)/(X1,..., Xp_1)%, M) = M1,

By Lemma M, (k[M]) identifies with the set of isomorphism classes of formal
A-modules F' € k[M][[X,Y]] lifting F}, in k. We now construct a natural map

Orr: Mp, (E[M]) — Mh1
recording the vy, ...,vp_1. Namely, let
F € Mg, (k[M])
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be a *-deformation of Fj over k[M]. As k is reduced, we can conclude that
F®k[M]k = F}. Now set

QM(F) = (Ul, Ce 7Uh,1) S (EM)h_l = ]\4'h_17
where v; is the coefficient of X' in [r]#(X). This is well-defined as
[7]F, (X) =0 mod (X)qh

and only depends on the x-deformation class of F' because if ¢(X) € k[M][[X]] is a
power series with ¢(X) = X mod eM, we have

— h
¢ ([7]r(p(X)) = [7]F mod (X')
as follows from the facts that €2 = 0, 7e M = 0. It is clear that 6 is natural in M.
By construction of n the composition

M1 = Homy (X1, ..., Xn_1)/(X1, ..., Xn_1)2, M) — Mp, (k[M]) 25 ph—?

is the identity for any k-vector space. To prove the lemma it therefore suffices to
see that 0j is injective. By Lemma the functor
M — Mg, (k[M])

commutes with finite products as k[M; @& Ms] = k[M;] X, k[M>] for k-vector spaces
My, M. This implies that Mg, (k[M]) is naturally a k-module (as functors com-
muting with finite products preserve k-module objects) and that 6 is a mor-
phism of k-module. In particular, it suffices to check that its kernel is trivial. If
F € Mg, (k[M]) lies in the kernel of 65;. Then by definition of 6, the formal
A-module F is of (exact) height h. Let Fy = Fy, € Mg, (k[M]) be the trivial defor-
mation of F}. Lemma implies that the functor on F}, lifts to an isomorphism
F = Fy. This proves that 6); is injective as desired. O

We used the following lemma.

Lemma 2.40. Let R be a k-algebra and Fi, F» € R[[X,Y]] two formal A-modules
of height h € Z>1, and let I C R be a nilpotent ideal. Then each isomorphism
Fi@rR/I = F,@R/I admits a unique lift to an isomorphism Fy — Fy.

Proof. 1t is clear that the functor
Algp — (Sets), S +— IsomFGLA(R)(F1®RS, F,®RS)

is corepresentable by some R-algebra R’. By Lemma Theorem and
Lemma [2.31] there exists a faithfully flat ind-finite étale R-algebra S such that
the S-algebra S’ := R’ ®g S is formally étale over S, i.e.,

Homg(S’,T) = Homg(S’,T/J)

for any S-algebra T and J C T a nilpotent ideal (this boils down to the fact that
TFroben =1 — () gyFrober =1 by nilpotence of J). By faithfully flat descent we can
conclude that R’ is a formally étale R-algebra as desired. ]

The conclusion of Theorem [2.34] is now a formal consequence of the following
general proposition. Let
Ca
be the category of local A-algebras R with residue field k& and nilpotent maximal
ideal (containing 7).
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Proposition 2.41. Let G1,Go: Ca — (Sets) be two functors which satisfy the
Mayer-Vietoris property and are formally smooth. Then a natural transformation

n: Gl — GQ
is an isomorphism if and only if niag: G1(k[M]) = G2(k[M]) is a bijection for all
k-modules M .

By Lemma Lemma [2.38] and Lemma this implies Theorem [2.34]
Proof. For simplicity we assume that G1(k) = {*} = Ga(k) is a singleton. Let
R € C4 with maximal ideal mg. Let n > 1 such that m%; = 0. If n = 0, we are
finished by assumption. By induction we may assume that ng is a bijection for all
S € Ca such that m%~! = 0. Set J :=m},'. Then J C R is a square zero ideal
with mg - J = 0. This implies that

R X k[J] =R ><R/J Ra (’/‘, (a7.7)) = (7’,7‘ +.])
and more generally
Rka[J] X vun ka[J} g]%XR/J... XR/JR.
From the Mayer-Vietoris property we can deduce that

G1(R) Xy (k) - - Xar k) GL(E[J]) = G1(R) X6y (rya) - XGa(ry0) GL(R).
This implies that the fibers of
G1(R) = G1(R/J)
are principal homogeneous spaces under the group Gi(k[J]). The same discussion
applies for G5. By assumption
Mty Gu(k[J]) = Ga(k[J])
is an isomorphism. Using formal smoothness of GG3 and induction we can conclude

that the diagram
MR

Gi(R)

i Nr/J

G1(R/J) —— Ga2(R/J)
is cartesian. As by induction 7g,; is an isomorphism, we get that g is an isomor-
phism. (I

G2(R)
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3. FORMAL SCHEMES

Let A be a complete discrete valuation ring with finite residue field k and let
Fj, € k[[X,Y]] be a formal A-module of height h € Z>;.

Our next aim is to construct the étale and surjective Gross-Hopkins period mor-
phism

h—1,ad
TGH - MF,”,] — PK

from the adic generic fiber of the Lubin-Tate space Mp, ,, a rigid analytic open
unit ball over K := Frac(A), to the (adic) projective space of dimension h — 1. The
existence of mqy is quite surprising. Indeed, it is not just étale surjective, but an
infinite covering space (in a suitable sense). In complex geometry a map like gy
can therefore not exist as the projective space is simply connected. To rigorously
present the construction of Tgy we need a geometric framework incorporating rigid-
analytic spaces like ]P’?{l’ad and formal schemes like Mg, . For this reason we aim
to discuss Huber’s category of adic spaces. As an introduction we discuss formal
schemes (a bit). This will lead to a different, useful viewpoint on formal A-modules
and Lubin-Tate spaces.

3.1. Formal schemes. Let us recall that there exist (at least) two viewpoints on
schemes. Namely,
(1) a scheme X is a locally ringed space, which locally is isomorphic to the
locally ringed space Spec(R) associated with some ring R,
(2) a scheme X is a (covariant) functor on rings, which locally agrees with the
functor corepresented by some ring R.
The first viewpoint is more geometric while the second is powerful for discussing
group schemes etc.. The link between both viewpoints is the Yoneda lemma.
We will now develop similar viewpoints on (affine) formal schemes.

Example 3.1. Recall the functor
Nil: (Alg,) — (Sets)
from Section [L4 We saw that
Nil(R) = Hom,ces(A[[X]], R),

where A[[X]] is considered as a topological A-algebra for its (X)-adic topology, and
R € Alg, is given the discrete topology. More generally, consider any topological
A-algebra B. Then we obtain a functor

Spf(B) := Homa cs(B, —): (Algy) — (Sets)

sending R to the set of continuous A-algebra homomorphisms B — R with R
equipped with the discrete topology. This construction is too general, and we
should assume that B is linearly topologized, i.e., admits a fundamental system
1;,j € J, of neighborhoods of 0, which are ideals.

Note that in this case the functor Hom 4 ¢ts(B, —) only depends on the completion

B:=B:= lim B/I;
H
Jj€J

which is a complete ring when equipped with its inverse limit topology as

~

HomA,cts(Ba 7) = HomA,cts(Ba 7)'
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Indeed, if R is any A-algebra (equipped with the discrete topology) and f: B — B
the natural morphism, then precomposition by f induces a bijection

Hom 4 ¢ts(B, R) = Hom 4 1s(B, R)

as both sides evaluate to
lim Hom (B/I;, R)
J

by the definition of the topologies on B and B. We leave it as an exercise to check
that the functor Homy cs(B, —) is corepresentable if and only if the topology on

B is discrete.
Useful examples are the n-dimensional formal affine space over A, which
A" = Spf(A[[X1,..., X,]]),

or the formal multiplicative group over A

G, a = Spf(A[[T — 1]])
with A[[T — 1]] the (T — 1)-adic completion of A[T,T~] (or A[T]).
We want to single out the class of topological rings, which are relevant for formal
schemes.

Definition 3.2 ([Stal7, Tag 07ES8]). Let R be a topological ring.

(1) R is called linearly topologized if 0 € R has a basis of neighborhoods, which
are ideals.

(2) If R is linearly topologized, then an ideal I C R is called an ideal of defi-
nition, if I C R is open and every neighborhood of O contains I™ for some
n > 0.

(3) R is called admissible if R is linearly topologized, contains an ideal of def-
ingtion and R is complete (i.e., as topological rings R = h&lR/J, where J

J
is running through a fundamental system of open neighborhoods of 0, which
are ideals, and the RHS is equipped with the inverse limit topology).
(4) R is called adic if R is complete and its topology is I-adic for some ideal
I1CR.

For example, R = R with its classical topology is not linearly topologized. Let
R=7Z[X1,Xs,...] 21 :=(X1,X5,...)
as in [Stal7, Tag 05JA]. Then the ring
R =lm R/I"

(with its inverse limit topology) is admissible, but not adic (as is proven in [Stal7l
Tag 05JA]). In general, if R is any ring and I C R a finitely generated ideal, then
the inverse limit topology on Ry is I- Rr-adic and in particular, Ry is I-Rl—adically
complete, cf. [Stal7l, Tag 05GG]. As a special case, we leave the following as an
exercise.

Exercise 3.3. Assume that R is a ring and 7w € R a non-zero divisor. Let [ := ()
and n > 0. Show that the image of m € R; is a non-zero divisor, that 7" - Ry =
ker(R;y — R/I™) and that Ry is m-adically complete.
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The definition of an admissible ring traces back to Grothendieck’s definition of a
formal scheme, cf. [Stal7, Tag 0AHY] and certain generalizations of the definition
are possible, cf. [Stal7, Tag 0A16]. For us the most important case is that of an
adic ring containing a finitely generated ideal of definition. For an admissible ring
A let

AdmA

be the category of admissible A-algebras B (with A — B continuous). Let us set
as the category of continuous ring morphisms A — R with R discretem The
morphisms in Adm 4 are by definition the continuous morphisms of A-algebras. If
B € Adm 4, then we have an equality
(10) Spf(B) = hi, = lim %/

n>0
of functors (Nilp 4) — (Sets). Indeed, the category Fun(Alg 4, (Sets)) has all (small)
limits and colimits, and these are computed pointwise.

Lemma 3.4. The functor
AdmS — Fun(Nilpy, (Sets)), B~ Spf(B) = hZ

cts
is fully faithful.
Lemma |3.4]is an example of the Yoneda lemma for pro-objects.

Proof. Let B,B’ € Admy and let I; C B’,7 € I, be a fundamental system of open
neighborhoods of 0, which are ideals in B’. Then we can calculate

HomFun(NilpA,(SetS)) (hﬁs, h’gs)
gHomFun(NilpA,(Sets)) (h%Hl hB /Ija hﬁs)
J
= ]&n HomFun(NilpAv(SetS)) (hB,/I; ) hfts)
J

%]'&nHomActs(B, B’/I;)
J

~Hom 4 cts(B, B)

using the Yoneda lemma and the fact the colimits of functors are computed point-
wise. 0

At this point we did not use the assumption on the existence of an ideal of
definition. This assumption will be important when introducing the topological
space of a formal scheme, cf. Definition [3.10

Exercise 3.5. A functor F': Alg, — (Sets) is called an fpqe-sheaf if for any faith-
fully flat morphism R — S of A-algebras the morphism F(R) — F(S) is an equal-
izer of the two natural morphisms py,ps: F(S) —» F(S®g S). If B € Adm4, then
KB is an fpqc-sheaf.

cts

We can now finish our discussion about viewing formal group laws as group
structures on the functor Nil, cf. Section

Orf Ais a complete discrete valuation ring, this recovers the category Nilp 4 of A-algebras R,
such that the uniformizers are nilpotent in R.
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Example 3.6. Let R be any ring and consider the functor

Nil = Spf(R[[X]]): Algp — (Sets).
By Lemma [3.4] we see that natural transformations of functors

n: Nil — Nil
are in bijection to
Hompg s (R[[X]], R[[X]]).
In general, Homp s (R[[X]], B) with B € Admp, identifies with the set
B®:={beB|b"—=0,n— o0}

of topologically nilpotent elements in B. Now assume that B = R[[X]]. Then we
get

B* = {f(X) € R[[X]] | f(0) € Nil(R)}.
Given f € B°° the induced natural transformation 7 preserves the zero section
0: Spec(R) — Nl if and only if f(0) = 0. From here it is now clear (thanks
to Lemma that formal group laws correspond bijectively to group structures
on the functor Nil whose two sided unit is 0: Spec(R) — Nil. Note that the
restriction that 0 is a two sided unit for the group structure on Al is not serious
as we can translate any section s: Spec(R) — Nil to the zero section. If A is a
discrete valuation ring with finite residue field, then we see similarly that formal
A-module( law)s F' € R[[X,Y]] for R € Alg, correspond bijectively to A-module
structures on the functor

Nil: Algp — (Sets),

whose additive unit is 0 € Nil.

An important way of constructing formal schemes is via completion of schemes
along (closed) subschemes. More generally, let A be any ring, let

X: Alg, — (Sets)
be a functor, and Y C X a subfunctor. Then we can define the formal completion
Xy
of X along Y as the subfunctor of X given by all s € X(R),R € Alg,, such
that there exists a nilpotent ideal I C R such that the image of s in X(R/I)
lies in Y(R/I). We leave it as an exercise to see that if R is any A-algebra and

I C R an ideal, then the formal completion of Spec(R) along its (closed) subscheme
Spec(R/I) is the formal affine scheme

Spf(Ry) C Spec(R).

If X is a group valued functor, and Y a subgroup functor, then the formal com-
pletion is pointwise stable under the group structure, and hence again a group
valued functor. This generalizes Example As a concrete example for a formal
completion assume R = Sym% M for an A-module M, and set

A[[M]]

as the admissible ring representing the formal completion of R at the ideal generated
by M. If M is a finite free A-module of rank n, then

Spf(A[[M]]) = Spf(A[[X1, ..., Xa]])
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and if M is finite projective such an isomorphism exists locally on Spec(A), cf.
Lemma Therefore we can call Spf(A[[M]]) a formal vector bundle over A.
Note that for any R € Nilp 4 there exists a natural bijection between
Spf(A[[M]))(R)
and the set
Hom 4 (M, Nil(R))
of A-linear homomorphisms M — Al(R). In particular, there exists the natural
zero section 0: Spf(A) — Spf(A[[M])).
Let us now compute some fiber products of formal (affine) schemes.

Lemma 3.7. Let A — R be a morphism of rings and M an A-module. Then
Spec(R) Xspec(a) SPE(A[[M]]) = Spf(R[[M ®4 R]]).
Proof. Given an A-algebra S, then
Spf(A[[M]])(S)
identifies with A-linear maps M — Nil(S). Given now an R-algebra S, then
naturally in S
Hom 4 (M, Nil(S)) 2 Hompg (R ®4 M, Nil(S)),

which proves the claim. ([

In general,

Spf(R) XSpf(A) Spf(B) = Spf(R@AB),
where R® 4B is the completed tensor product of the admissible A-algebras R, B,
cf. [Gro60, §0.(7.7.6.)]. For example,
SpE(A[[M]]) xspe(a) SPE(A[[M]]) = Spf(A[[M; @4 Mo]))

as can also be calculated by hand.

Exercise 3.8. Let A be a ring and let X: Alg, — (Sets) be a functor. Then
X = Spf(A[[M]]) for a finite projective A-module M if and only if the following
conditions are satisfied

(1) X = Spf(B) for some admissible A-algebra B,
(2) X is formally smooth, cf. Definition [2.36]
(3) there exists a section s € X(A) and X is the formal completion of X along
S,
(4) X commutes with filtered colimits in Alg,.
If these conditions are satisfied we call X a formal Lie variety over A.
The critical point in Exercise 3.8 is to find a candidate for the A-module M.
This works as follows: Recall that for an A-module N we defined the A-algebra
AN|=A@eN
with €2 = 0. If X = Spf(A[[M]]) and s: Spec(A4) — X the zero section, then there
exists a natural isomorphism
HOIIlA(]\47 N) &~ X(A[N]) X X (A) {*}

with {*} — X(A) the unique map with image s € X(A) = Homu(Spec(A4), X)
and by the Yoneda lemma this characterizes M up to isomorphism. Given an
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isomorphism X 2 Spf(B), and f: B — A the morphism corresponding to the
section s, then M = I/I? with I := ker(B — A).

Definition 3.9. With the above notation we call
T X := X(A[A]) xx(a) {*} = Homyu (M, A)

the tangent space of X at s, and the rank of M the relative dimension of X over

A.

It is clear that the category of formal Lie varieties admits products. Let us now
introduce a locally (topologically) ringed space associated to an admissible ring A.
We set (abusing notation)

Spf(A)
as the set of open prime ideals in A (which can be much smaller than Spec(A)). If
I C A is an ideal of definition, then

Spf(A) = Spec(A/I)

as each open prime ideal in A must contain I. In particular, the Zariski topology
on Spec(A/I) can be transported to Spf(A). One can check that this topology is
independet of the choice of I. More canonically, pick f € A and set

D(f) € Spf(4)

as the subset of open prime ideals p C A with f ¢ p. The subsets D(f),f €
A, form then a basis for the previously constructed topology, and the topological
space Spf(A) is functorial in morphisms A — B of admissible rings. Given f € A
there exists an admissible A-algebra A(1/f) such that a morphism g: A — B of

admissible rings factors over A(1/f) if and only if Spf(B) Seito), Spf(A) factors

over D(f). More concretely, if
ied
for a fundamental system of open ideals of definition I; C A,i € J, then
AQ/f) = tim A/LTL/ )
ieJ
In particular, A(1/f) depends only on D(f) and we obtain a presheaf Ogp(a)

D(f) = A(1/f)

of topological rings on (a basis of) Spf(A). Alternatively, Ogp¢(a) is the inverse
limit (in presheaves of topological rings) of the structure sheaves

Ospec(a/1;)

on the topological spaces Spec(A/I;) = Spf(A). As limits of sheaves are again
sheaves, we see that Ogp¢(4) is a sheaf of topological rings on Spf(A). If A is discrete
this sheaf need not be a sheaf of discrete topological rings as infinite products/limits
of discrete topological spaces are not necessarily discrete. This subtle point is
usually not relevant.

Let us finish this subsection with the definition of a formal scheme.

Definition 3.10. A locally topologically ringed space (X,Ox) is called a formal
scheme if it is locally isomorphic to (Spf(A), Ogpecay) for some admissible ring A.
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We leave it as an exercise to check that for any formal scheme X over some
Spf(A) the functor

hx: Nilpy — (Sets), R+~ Hom4(Spec(R), X)

is an fpqc-sheaf and that the functor

h: (Formal schemes over Spec(R)) — Fun(Alg,, (Sets))

is fully faithful.

3.2. Formal A-modules revisited. Assume that A is any ring.

Definition 3.11. Let R be an A-algebra.

(1)

(2)

A (commutative, infinitesimal, formally smooth) formal group over R (of
topologically finite type) is a (commutative) group object G in the category of
formal Lie varieties over R. A morphism of formal groups is a morphism of
group objects. We denote by FG™P(R) the category of commutative formal
groups over R (of arbitrary relative dimension).

For G € FG(R) we call
Lie(G) := ToG,

with 0: Spec(R) — G the zero section, the Lie algebra of G. Clearly, the
Lie algebra is functorial in morphisms of formal groups.

A formal A-module over R an A-module object (G,v: A — Endpgarn (g)(9)
in the category FG*™(R) of commutative formal groups over R such that
the action of A on Lie(G) coincides with the natural A-action coming from
R. More precisely, this means that the diagram

JI $ EndFGarb(R) (g)
R —— Endyjod, (Lie(G))

commutes. A morphism of formal A-modules is a morphism of A-module
objects in FG™(R). We denote by FGYP(R) the category of formal A-
modules (of arbitrary relative dimension).

Given a formal A-module (G, ) we set

[a] := [algi(a): G = G

for a € A. We let FG(R),FG4(R) be the categories of formal groups/formal A-
modules of relative dimension 1. These are the formal groups/formal A-modules
we are mostly interested in. In Section we associated a formal A-module to
any formal A-module law, and similarly a morphism of formal A-modules to any
morphism of formal A-module laws. By Lemma[3.4we can deduce that the resulting

functor

FGLA(R) — FGA(R)

is fully faithful. Its essential image consists precisely of those formal A-module G
such that Lie(G) is a free A-module (of rank 1). In particular, each formal A-module
lies Zariski-locally on Spec(R) in the essential image.
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Assume from now on that A is a complete discrete valuation ring with finite
residue field k of characteristic p and cardinality q. We let K be the fraction field
of A.

Definition 3.12. Let R € Algy and G € FG4(R). Then we call G a w-divisible
formal A-module if ker([w]: G — G) is represented by a finite, locally free scheme
over Spec(R).

Lemma 3.13. Let R € Alg, and G € FG4(R). The following conditions are
equivalent:

(1) G is a w-divisible formal A-module.
(2) The function

htg: Spec(R) — Z>o U {oo}, =+ ht(G Xspec(r) Spec(k(z)))

is locally constant and takes values in Z>g.

If these conditions are satisfied and htg is constant of value h we say that G is a
m-divisible formal A-module of height h.

Proof. We prove a more general statement in Lemma [3.15 O

For example, if R is a K-algebra, then [r] is invertible on G and each formal
A-module over R is w-divisible of height 0. As a consequence if R is an A-algebra
and G € FG 4(R) m-divisible of height A > 1, then © must be nilpotent in R.

The following “rigidity of quasi-isogenies” between m-divisible formal A-modules
allows us to reinterpret the Lubin-Tate space as a moduli space of formal A-modules
in a quasi-isogeny class.

Lemma 3.14. Let R € Nilpy, I C R a nilpotent ideal and G1,Gs two m-divisible
formal A-modules over R. Then the map

Hompg , (r)(G1,G2) = Hompg , (r/1)(G1&RrR/1, G2, @R R/T)
is an injection of w-torsion free modules with cokernel " -torsion for some n > 1.

The injectivity can be deduced from Lemma [2.10

Proof. We may assume that I?2 = 0 and - I = 0 and that G;, G, arise from formal
A-module laws Fy, Fy. Let g € R[[X]] be a power series with coefficients in I. Then
we can conclude that

[ 7, (9(X)) = 0.
If g is moreover a morphism of formal A-modules, then
(], (9(X) = g([7] (X)) =0,

which forces g = 0 as G; is w-divisible. Assume now that f € R[[X]] reduces to a
morphism of formal A-modules over R/I. Then we can conclude that

(7], (f (FL(X,Y)) = F2(f(X), f(Y))) =0
as f(F1(X,Y)) — Fa(f(X), f(Y)) has coefficients in I. We can write
0= [n]p, (f(FU(X, V)= F2(f(X), f(Y))) = [7]p, (f (FL(X, Y)) = 7] m, (F2(F(X), £(Y)))+9(X,Y)
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with g(X,Y") having coefficients in I. This implies that

[k, (F(F1(X,Y)))
=[7]p (7] (F2(f(X), f(Y))) + 9(X,Y))
=[] r ([7] p, (F2(f(X), f(Y)))) + mg(X,Y)
=F3([7*]r (F(X)), [7%]r (F(Y))),
i.e., that [72]x, o f(X) defines a morphism G; — Go. O
Lemma 3.15. Let R € Alg, and let f: Gi — G2 be a morphism. Then the

following conditions are equivalent:
(1) ker(f) is represented by a finite, locally free scheme over Spec(R),
(2) The height function ht(f): Spec(R) — Z>oU{oo} mapping x to ht(f@rk(z))
is locally constant with value in Z>1.
If these conditions are satisfied, we call f an isogeny.

Proof. After Zariski-localization on Spec(R) we may represent f via some pow-
erseries g € R[[X]]. If R is a field, then we see moreover that

¢ = dimp(R[[X]]/(9)).

Assume that R is general. By the existence of fiber products in formal schemes,

ker(f) 2 Spf(R[[X]]/(g)),

where (g) denotes the closure of (g). Under the first assumption, Spf(R[[X]]/(g)) =
Spec(S) for some finite locally free R-algebra S. As the kernel commutes with base
change in R, we get that for each « € Spec(R)

dimy,(,)S @ g k(z) = ¢"*).

But the LHS of this expression is locally constant.
For the converse direction, we may assume that ht(f) is constant of value h.
Then

g(X):a0+a1X+...+athqh+...

with ag, ..., a1 nilpotent in R, and a,n € R*. We leave as an exercise to check
that this implies that

RI[X]]/(9(X))

is freeover R (on 1, X, . .. ,th_l). This in turn implies that (¢) = (¢) and therefore

ker(f) = Spec(R[[X]]/(9))
as desired. O
The second property in Lemma |3.15| implies that isogenies are stable under
composition.

The function ht(f) is always semicontinuous (its value may jump under special-
ization).

Lemma 3.16. Let R € Alg, and f: Gi — Go an isogeny of w-divisible formal
A-modules over R. Then there exists some n > 1 and an isogeny g: Go — Gy with

gof=I[r"], fog=I[r"].
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Proof. By Lemma we may check this over R/I for some nilpotent ideal I C R.
As f is an isogeny we can conclude that the morphism

Gi — G2

is an epimorphism of fpqc-sheaves on Algy (this only uses that R[[X]]/(f(X)) is
a finite, locally free faithfully flat R-algebra). In particular, G /ker(f) = Go. We
claim that there exists some n > 1 such that

[7]" (ker(f)) = 0.

We may check this Zariski-locally on Spec(R) (as Spec(R) is quasi-compact), and
thus assume the G; arises from some formal A-module law F; € R[[X,Y]],i = 1, 2.
By Lemma we may check this over R/I for some nilpotent ideal 7 C R. As
G1,Gs are m-divisible (necessarily of the same height) we may find some nilpotent
I C R such that Fy, F, are of exact height h (in the sense of definition Defini-
tion . By Lemma we may assume, by passing to a faithfully flat ind-
étale R-algebra, that F}, F» are normalized and hence by Theorem [2.29| isomor-
phic. By Lemma we can then conclude that there exists some n > 1 and
some g: Go — Gy such that g o f = [7]™, which proves our claim. Knowing that
[7]™(ker(f)) = O there exists some morphism g: Go — G; factoring [7"]: G — Gy
into g o f. Reducing modulo some nilpotent ideal, we may deduce that g is an
isogeny by Lemma As f is an epimorphism for the fpqc-topology we can
deduce that f o g = [r] as well because

fogof=folr"]=I[x"]of.
This finishes the proof. (]

The converse of Lemma holds true as well, if f,g are morphisms between
w-divisible formal A-modules satisfying fog = [r"], then f, g are isogenies. Indeed,
by semicontinuity of ht(f),ht(g) we can deduce that both functions are actually
locally constant as the height function for 7" is.

Definition 3.17. Let R € Nilp,. A quasi-isogeny f: G1 --» Go of w-divisible
formal A-modules is an element of Hompg , (r)(G1,G2) ®a K such that 7" - f is an
isogeny for some n > 1.

By Lemma[3.16)a quasi-isogeny is equivalently an isomorphism in the isogeny cat-
egory of m-divisible formal A-modules, i.e., in the category with objects w-divisible
formal A-modules and morphisms Hompg , (ry(G1,G2) ®a K.

Given an isogeny f: Gi — Go we get by Lemma [2.2) the function

ht: Spec(R) — Zso, = — ht(f&rk(z): GiOrk(z) = Go®rk(T)),

which is locally constant and called the height of f. Given a quasi-isogeny f: G --+
G- we define the locally constant function

hty = htyn s — htn: Spec(R) — Z

if n > 1 satisfies that 7™ - f is an isogeny.
We can now present an alternative description of Lubin-Tate spaces. Fix a formal
A-module Gy, of height h and some n > 1. We define the functor

MRz, n: Nilpy — (Sets)
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which maps R € Nilp 4 to the set
Mrz,6, n(R)

of isomorphism class of pair (G, «) with G a m-divisible formal A-module over R
and

a: GORR/m -+ GLOrR/T
a quasi-isogeny of constant height n, and a morphism R — S in Nilp 4 to the natural

pullback morphism. The formal A-module G, is associated with some formal A-
module law F}, € k[[X,Y]] of height h.

Proposition 3.18. The functors Mg, , MRrz.g,.0 are naturally isomorphic.

The “RZ” is an abbreviation for Rapoport-Zink as the definition of Mgy g, o is
for A =7Z, a particular case of a Rapoport-Zink space, cf. [RZ96].

Proof. Let R € Nilp,. Given a *-deformation F' € R[[X,Y]] of F}, let Gr be the
associated formal A-module. By Lemma [3.14] we can lift the identity F' = F}, mod I
for the unspecified nilpotent ideal I C R to a quasi-isogeny
ap: GORR/T --» Gu&yR/T.

This quasi-isogeny has height 0 as the height of quasi-isogenies is invariant under
passage to quotients by nilpotent ideals. It is clear that we get a natural transfor-
mation

Mp, = Mrzg,0, F= (Gr,ar).
Assume that (G, a) € Mgz g, 0(R). Then there exists a nilpotent ideal I C R such
that

a@rR/I: GORR/I -+ Gr@LR/I
is an isomorphism. Indeed, assume that 7"« = f is an isogeny. Then there exists a
nilpotent ideal I € R containing 7 such that Zariski-locally on Spec(R) the isogeny
f can be represented by a power series whose coefficients before the first invertible
coefficient lie in /. As ht, = 0 we can conclude by Lemma that we can write
Zariski-locally f = [7]™ o g for some isomorphism

g: GORR/I = G,&rR/I.

By uniqueness of g these local morphisms glue to the required isomorphism. In
particular, we can conclude (as I is nilpotent) that Lie(G) is free and therefore
G is associated to some formal A-module law F' € R[[X,Y]]. Doing a coordinate

transform via some lift of the power series representing «, we can arrange that
F = Fj, mod I. This proves surjectivity of

M, (R) = Mgz, o(R).
Injectivity follows from Lemma [3.14 (]
Note that by passing to quasi-isogenies the unspecified nilpotent ideal in the

definition of Mp, disappeared. From the viewpoint of Rapoport-Zink spaces it is
more natural to consider the space

Mrzg = [ Mrzgn,
ne”Z
which parametrizes formal A-modules G together with a quasi-isogeny

a: GOrR/m -+ GLOrR/T
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of arbitrary height. Clearly, the full group of quasi-isogenies of G;, acts on Mgz g
(and not just the isomorphisms).

3.3. Invariant differentials. We introduce now invariant differentials on formal
A-modules.
Let S be any ring. Given the formal scheme Z = Spf(S[[X7, ..., X,]]) we define

its (continuous) de Rham complex Q'Z /Spec(s) S the complex

02(2) = S[[X1, -, Xall & O gpeas) = ED SIX1, -, XulldXs B QL gcoim) = -
i=1

where d denotes the exterior derivative of differentials. One checks that up to a
canonical isomorphism the terms of this complex and the differential do depend only
on Z and not the chosen isomorphism Oz(Z) = S[[X1,...,X,]]). In particular,
we can glue these local complexes in the case that Z = Spf(S[[M]])) is a formal
Lie variety with M = Ty Z a finite projective S-module. Given formal Lie varieties
Z1,Z5 and a morphism f: Z; — Z, of formal schemes over Spec(S) the pullback
of differentials defines a morphism

f*: Q.ZQ/SPCC(S) - Q.Zl/Spcc(S)
of complexes.
Assume now that A is a complete discrete valuation ring with finite residue field
and that R = S is an A-algebra. Let G — Spec(R) be a (one-dimensional) formal
A-module. Let

m,Ppry, pro: g X Spec(R) Gg—g
be the multiplication resp. first and second projection. We call a differential

W € Qg s poc(r)
invariant if
m’w = priw + prow € QéXspcc(mg/SpeC(R)’
Let
w(G) € Qf spec(r)
be the R-submodule of invariant differentials. For example, the differentials

dX, resp. Trx

on the formal Z,-modules Ga, resp. Gm are invariant.
Given a morphism f: G; — Go of formal A-modules and w € w(Gs), then f*w €
w(Gy) as is easily checked.

Lemma 3.19. The R-module w(G) is locally free of rank 1, canonically isomorphic
to

Lie(G)" := Homg(Lie(G), R)
and Og(G) ®r w(G) = Qé/Spec(R) via the natural morphism f Q@ w — f-w. If
w € w(G) and a € A, then [a]*w = aw.
Proof. First assume that G = G for some formal A-module law F. Then we are

seeking
_ A1
w(X) = f(X)dX € Qg gpec(r)
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such that
FF(X,Y)d(F(X,Y)) = f(X)dX + f(Y)dY.
The first equation is equivalent to
1) X)) IEFXY) = f(X), FFXY)IER(X,Y) = £(Y)
’ 0X ’ ’ ’ oY ’ ’
Setting X = 0 in the first yields

oF

FO) S 0.Y) = 7(0).
As 22(0,Y) =1 mod (X,Y) we get
__fO)
fY) = oF (0, 7)

In particular, each invariant differential w(X) = f(X)d(X) is determined by f(0).
Let us check that the differential
" dX
F = 35 v
5% (0, X)
is invariant. Taking the Z-derivative of F(Z, F(X,Y)) = F(F(Z,X),Y) yields
oF oF oF
—(Z,F(X,)Y)) = —=(F(Z£,X),Y)—(Z, X).
(X)) = S (F(Z,X),Y) S (2,X)

Setting Z = 0 proves invariance of wp. Let a € A. As [a]: G — G is an endomor-
phism of the formal group G, the differentials
[a]*w = aw
are invariant. As [a](X) = aX mod (X?) the coefficients of dX agree for both.
Hence, both differentials have to be equal. The pairing
w(G) x Lie(G) = R, (w=h(X)dX,y: (X)/(X)* = R) — (h(X)X mod (X)?)

is A-linear and invariant under substituting X by some g(X) € R[[X]] with ¢(0) =
0,¢'(0) € R*. We can conclude that both claims extend by Zariski glueing to
arbitrary formal A-modules over Spec(R). O

If G = Gp for some formal A-module law F’ we note that the generator
1
9%(0,X)
depends on F', and not just on G. Let K be the fraction field of A. Recall that
for any m-torsion free A-algebra R and G = G the formal A-module associated

with some formal A-module law F' € R[[X,Y]], there exists a unique series, the
“logarithm of F”,

dX € w(9)

logp(X) € (R®a K)[[X]]
such that
IOgF(O) = 07 1OglF(O) = 1a logF(F(X7 Y)) = 1OgF()() + logF(Y)a
Lemma [2.23] In other words, logy defines an isomorphism of

GOr(R®a K) = @G,R®AK-
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As the differential dX is invariant on @a, we can conclude that

1
logy(dX) = d(log (X)) = logh(X)dX = -5 dx
ﬁ(ov )
by comparing the coefficient of dX. In particular,
1
log(X) = g
5% (0.X)

has coefficients in R.
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4. ADIC SPACES

Formal schemes are not enough for our purpose as (naively) we cannot take their
“generic fiber”. Let us mention a typical operation that we would like to do. Let
A be a complete discrete valuation ring, m € A a uniformizer. Then we get

Spf(A) C Spec(A)

and the base change of Spec(A[T]) along this morphism is corepresented by the
m-adic completion

AT) = {f(T) =) € A[[T]] | as| =0, i = oo}
i=0

of A[T]. Now the “rigid-analytic generic fiber” of Spf(A(T')) should be corepre-
sented by the K := Frac(A)-algebra

K(T) := A(T) &4 K.

The ring K(T') is no longer admissible. For this reason we have to enlarge our test
category, and to discuss Huber rings.

4.1. Huber rings. We now introduce Huber rings, which form the building block
for Huber’s category of adic spaces. References for Huber rings etc. are [Hub93|[Hub94],
[SW20], [Mor19].

Definition 4.1. A Huber ring is a topological ring A for which there exists an open
subring Ag C A whose subspace topology is I-adic for some finitely generated ideal
1 C Ay. Any such subring Ag is called a ring of definition.

The finite generation of I is important, e.g., to get that [-adic completions are
well-behaved, cf. [Stal7, Tag 05GG].

Example 4.2. Let us give examples of Huber rings.

(1) Any discrete ring A is Huber with any subring a ring of definition (with
I = {0}). This example relates to classical schemes.

(2) If A is any ring, I C A a finitely generated ideal, then A with its I-adic
topology is Huber. The example relates to formal schemes.

(3) Let Ay be any ring, g € Ap a non-zero divisor and A := Ap[1/g]. Then
we can make A into a topological group by requiring that {g"Ag}n>0 is a
fundamental system of open neighborhoods of 0. For this topology A is in
fact a topological ring as one checks that multiplication by ¢ is continuous.
This example relates to rigid-analytic varieties.

(4) More concretely, let (K,| — |) be a non-archimedean valued field and let
(A,| —|) be a (non-archimedean) Banach algebra over K. Then

A02:{GGA||G‘§1}

is a subring. If there exists an element g € K with 0 < |g| < 1, then the
subspace topology on Ay is (g)-adic and A = Ag[1/g].

The following exercise yields the main example from rigid-analytic geometry.



LECTURE NOTES ON LUBIN-TATE SPACES 97

Exercise 4.3. Let K be a non-archimedean valued field with (multiplicative) val-
uation | — |: K — Rx>¢. Define

K(T) :={>_a;T" | |ai| — 0,i — oo},
i=0
Show that -
1> a;T"| == max{|a,| | i > 0}
i=0
is a norm on K(T'), and that K(T') is complete for this norm.

Similarly, we can define the Tate algebra K(T1,...,T},) for n > 1.

Definition 4.4. Let A be a topological ring. A subset S C A is called bounded if
for any open neighborhood U of 0 there exists an open neighborhood V' of 0, such
that {v-s |veV,se S} CU.

For example, in Item [3| a subset S C A = Ay[l/g] is bounded if and only if
S C1/g™Aq for some n > 0.
Lemma 4.5. Let A be a Huber ring, and Ag C A a subring. Then the following
are equivalent:
(1) Ao is a ring of definition,
(2) Ao is open in A and adic, i.e., its subspace topology is adic,
(3) Ap is open and bounded.

Proof. Clearly, 1) = 2). If Ag is open and adic, then there exists a fundamental
system of neighborhoods of 0 in Ag, which are ideals. This implies boundedness of
Ap. Thus, 2) = 3). Let us prove 3) = 1). Let B C A be ring of definition, and let
J = (m,...,m) C B be a finitely generated ideal of definition. Let
T:={m1,...,7n}
For k > 1 set
T(k‘) = {tl EERN A% | t; € T}
Note that
JE=T(k) - J
for k > 1. As Ay is open, there exists some k > 1, such that
T(k) C J* C Ay.
Set
I:=T(k)- Ap.
Take [ > 1, such that J* C Ay. Then
I" = T(nk)Ag 2 T(nk)J' = J+,
ie.,, I™ C Apis open. Let V C Ag be an open neighborhood of 0. Then there exists
some m > 1, such that
J Ay CV
as Ag is bounded. Then
I™ = T(mk)Ag C T(mk —1).J - Ag = J"FAq C V,

which proves that the subspace topology on Ag is I-adic. As by construction I is
finitely generated, Ag is a ring of definition. O
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Definition 4.6. Let A be a Huber ring. Then an element a € A is power bounded
if {a™ | n >0} C A is a bounded subset. We let

A°CA
be the subset of power bounded elements.

For example, if p is a prime and A = Q,[T]/(T?) (with ring of definition
Z,[T)/(T?) and ideal of definition (p)), then

A° =7, +TQ,.

Lemma 4.7. Let A be a Huber ring.
(1) The subset A° C A of power bounded elements is a subring.
(2) A° is the filtered union of all rings of definition Ag C A. In particular,
each ring of definition Ag C A is contained in A°.

Proof. Clearly, each ring of definition Ay C A is contained in A° as Ay is bounded.
We first prove that if Ag, A C A are rings of definition, then the ring B := A - A}
generated by them is again a ring of definition. By Lemma it suffices to see
that B is bounded. Let U C A be an open neighborhood of 0. By definition of an
Huber ring, we may assume that U is a subgroup. As Ag, A} are bounded there
exist open neighborhoods Vi, Vo C A, which are subgroups, such that

Vi-Ay, CU
and
Vo Ao C V1.
We can conclude that
Vo-BC V- Ag- Ay CVi- Ay CU,

which proves that B is bounded. The same argument with Aj replaced by the
bounded set {z"},>¢ for x € A° implies that each power bounded element lies in
some ring of definition. This finishes the proof. O

Definition 4.8. Let A be a Huber ring. An element a € A is called topologically
nilpotent if a™ — 0 forn — oo. We let

A°° C A
be the subset of topologically nilpotent elements.

We leave it as an exercise to see that A°° C A° is an ideal. If Ay C A is a ring
of definition with ideal of definition I C Ag, then VT C A% and A°° is the union
of those. In particular, A°° C A is open.

Of particular importance are pseudo-uniformizers.

Definition 4.9. Let A be a Huber ring. A topologically nilpotent unit x € A is
called a pseudo-uniformizer. A Huber ring possessing a pseudo-uniformizer is called
a Tate-Huber ring.

Note that z is invertible in A, but never in any ring of definition (except A = {0}).
For example, let A, Ag, g be as in Item |3} Then A = Ag[l/g] is Tate and g € A a
pseudo-uniformizer.

Conversely, each Tate-Huber ring is of this form.
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Lemma 4.10. Let A be a Tate-Huber ring, and Ag C A a ring of definition. Let
x € A be a pseudo-uniformizer. Then g := z™ € Ay for some n > 0. Moreover, the
subspace topology in Ag is the (g)-adic topology and A = Ag[1/g].

Proof. Let I C Ay be an ideal of definition. As [ is an open neighborhood of 0
and z" — 0,n — oo, we can conclude that ™ € I for some n > 0. Choose such
an n and set g := ™. The multiplication by ¢ is a homeomorphism on A. In
particular, g - Ag is open in A, and hence in Ag as gAg C Ap. In particular, there
exists some m > 0 such that I™ C gAy. As gAy C I, we see that the I-adic and
(g)-adic topologies on Aj agree. Let us show that A = Ap[1/g] and pick any a € A
for this. As g is topologically nilpotent, we can conclude that g"a — 0,n — co. In
particular, there exists n > 0 such that

g"ta € Ap.

This proves that a € Ag[1/g] C A as desired. O

Let A be a discrete valuation ring with fraction field K and let # € A be a
uniformizer. From Lemma we can conclude that there exists no topology on

A[[T)[1/7]
making A[[T]] an open subring whose topology is (m, T')-adic.

Definition 4.11. Let A be a Huber ring. An open, integrally closed subring AT C A
is called a ring of integral elements if AT C A°. A Huber pair is pair (A, A1) of a
Huber ring A and a subring AT C A of integral elements. A morphism (A, AT) —

(B, B™) of Huber pairs is a continuous ring homomorphism A — B sending AT to
BT.

Lemma 4.12. Let A be a Huber ring. Then A° C A is a ring of integral elements.
Moreover, each ring of integral elements AT C A contains A°° and At — AT /A°°

defines a bijection between ring of elements in A and integrally closed subrings of
A°JA°°.

In particular, rings of integral elements exist in abundance.

Proof. We have to check that A° is integrally closed in A. But if x € A satisfies
2 +az" 4. +a,=0

with aq1,...,a, € A°, then x is again power bounded, i.e., lies in A°. Now let
AT C A be any ring of integral elements, and & € A°°. As AT is open there exists
some n > 0 such that 2® € AT. As AT is integrally closed we can conclude that
x € AT, ie.,, A°° C AT, Let D C A°/A°° be any subring with preimage B C A°.
Then an element z € A°/A°° is integral over D if and only if some preimage of it in
A° is integral over B (as one can adjust the constant term by an element in A°°).
This proves the last assertion. ([l

From Lemma [4.7] we can conclude that each ring of integral elements is the
filtered union of the rings of definition, which are contained in it. Lemma
implies that the an arbitrary intersection of rings of elements is again a ring of
integral elements.
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4.2. Valuation spectra. We want to associate a topological space of (continuous)
valuations

Spa(A4, AT)
to any Huber pair (4, AT).

Definition 4.13. A totally ordered abelian group is an abelian group T together
with a total order < on it such that for all a,b,c € T with a < b we have

a+c<b+ec

Clearly, subgroups of totally ordered abelian groups with the induced order are
again totally ordered abelian groups, e.g., the trivial group {1}.

Example 4.14. Let us give examples of totally ordered abelian groups.

(1) (R,+) with its usual order is a totally ordered abelian group. The logarithm
and exponential define mutually inverse isomorphisms

(R, +) = (R>o, ")
of totally ordered abelian groups.

(2) Let I be any well-ordered set, e.g., I = {1,2,...,n} with the natural order,
and T';,4 € I, a family of totally ordered abelian groups (each written
multplicatively). Then the product

[T
il
admits the lexicographic order: Let a := (7;)ier, b := (7})ier € [[ T's be two
iel
distinct elements and let ig € I be the minimal element such that ; # ..
Then set a < b if v;, < ;-

For a totally ordered abelian group I' (written multiplicatively) we define the
totally ordered abelian monoid
ru{o}
by setting v-0:=0and 0 < v for v € T".
We now present a huge generalization of the definition of the (multiplicative)
valuations discussed in Section [[.2]

Definition 4.15. Let A be any ring. A (multiplicative) valuation on A is a map

|—|: A—=TuU{0}
with T' some totally ordered abelian group such that
(1) [0=0,[1] =1,
(2) fa-bf = al - [b]
(3) la+b| < max{|al, |bl}
fora,be A.
The support of a valuation | — | is the prime ideal

supp(| —[) == | — [T ({0}).
Two valuations
|—]: A=Tu{0}, |-|:A—=T"u{0}
are equivalent if for all a,b € A we have

la| < |b| if and only if |a|” < |b]".
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Let us note that the same proof as in Lemma [T.4] works and thus each valuation
satisfies the strong triangle inequality

|a + b| = max{|al, [b[}

if |a| # |b| for a,b € A. If A is a topological ring, then it makes sense to impose a
continuity condition on the valuations.

Definition 4.16. Let A be a topological ring. A wvaluation | —|: A — T'U {0} is
called continuous if for all a € A with |a| # 0 the set

{oe Al o] <lal}
is open in A.
We don’t demand < as we want that trivial valuations (i.e., those with I = {1})
have open prime ideals as support. In general the support of a continuous valuation

is a closed prime ideal as it is an intersection of open, hence closed, subgroups. Note
that the condition of continuity only depends on the equivalence class of | — |.

Definition 4.17. Let (A, AT) be Huber pair. We set
Spa(4, AT)

as the set of equivalence classes of continuous valuations | —|: A — T'U{0} for T
some arbitrary totally ordered abelian group such that

la] <1
foralla € A™.

We will occasionally replace the AT in Definition by any subset S C A and

write
Spa(A4, S)

for the equivalence classes of continuos valuations | — |: A — I' U {0} such that
la| <1 for a € S. We leave it as an exercise to see that Spa(A4,S) = Spa(A, AT)
for AT the smallest ring of integral elements in A, which contains S. We also use
the short notation Spa(A) for Spa(A4, A°), and

Spv(4,S)

for the Spa of the underlying discrete ring A with its subset S C A (which only
depends on the integral closed subring generated by S, which may not be open).

We will use the following convenient notation: If z € Spa(A, A™) is the equiva-
lence class of the valuation | — |: A — ' U {0}, then we write

|f(2)] :==(f) = |f] € TU{0}.
for f € A.
We now define a topology on Spa(A, AT).
Definition 4.18. For f1,..., fn,g € A set

Oty i (o € Spa(A, A7) | 150 < lgfe)] £0, i =L....on)



102 JOHANNES ANSCHUTZ

The colletion of subsets U(%) C Spa(A4, AT") for f1,..., fn,g € A is stable
under intersections because

f17"';fn f{?"'?f/
Ul oIy qplidmy
( 7 )NU( 7 ) =U( 0
and hence they form the basis of a topology on Spa(A, AT). If ¢: (A, AT) —

(B, B™) a morphism of Huber pairs, then

flg/a'"afnglvf{g""vfy/ng)

!/

|—l=1l=lo¢
defines a continuous map.
h: Spa(B, BT) — Spa(4, A™)
Indeed,
EEPE SORRRRP L e(f1),--- o(fn
(U (i) = U((l)—())

9 (9)
for fi,...,fn,9 € B.
Before giving examples let us describe Spa(A, AT) via valuation rings. Given
x € Spa(A, AT) with (equivalence class of the) valuation
|—|: A—=Tu{0}
let
k() i= Frac(A /supp(| — )
be the “residue field of Spa(A, AT) at z”. The valuation | — | extends naturally to
a valuation
| — |z k(z) = T U{0},
and
k(z)t :={a € k(x) | |al, <1}

is a valuation ring (with fraction field k(z)) in the sense of the following definition.

Definition 4.19. A waluation ring is an integral domain R such that for each
non-zero x € K := Frac(R) we have x € R or and =1 € R.

It is not difficult to see that if R is a valuation ring, then R is a local ring with

maximal ideal
mp:={rc€R|xz=0o0rz'¢R}.

Moreover, each subring S C K containing R is again a valuation ring, equal to the
localization of R at the prime ideal mg N R, and that the ideals in R are linearly
ordered. The last point characterizes valuation rings as those integral domains
whose set of ideals is linearly ordered via inclusion.

Valuation rings yield valuations.

Lemma 4.20. Let R be a valuation ring and K := Frac(R) its fraction field. Set
I := K*/R*. Let us write v < n for v,n € T if v = xn for some x € R. Then
(T', <) is a totally ordered abelian group and the natural projection

|—|: K - Tu{0}
s a valuation whose associated valuation ring is R.

Proof. We leave the verification as an exercise. [



LECTURE NOTES ON LUBIN-TATE SPACES 103

If T is a totally ordered abelian group, then the group algebra Z[I'] has the
natural (surjective) valuation

| —|: Z[I'] - T u{0}, Zanﬂ»ﬁsup{fy | ay # 0}
yel’
and thus each totally ordered abelian group arises via Lemma

From Lemma [£.20]it is easy to deduce that the ideals in a valuation ring are lin-
early ordered, the finitely generated ideals are principal, and moreover that radical
ideals in valuation rings are prime.

Given a valuation ring we call its Krull dimension the rank of the associated
valuation. If K is a field let us call a subring R C K a valuation subring of K if R
is a valuation ring with fraction field K.

As a corollary we get another description of Spa(A, S) for a discrete ring A and
a subset S C A.

Corollary 4.21. Let A be a (discrete) ring and S C A a subset. The map
x + (supp(z), k(x)™)
defines a bijection from Spa(A, S) to the set of pairs

(p, R)

with p C A a prime ideal, R C k(p) := Frac(A/p) a valuation subring such that R
contains the image of S under A — k(p).

Proof. This follows from Lemma (I

Phrased differently, the map
supp: Spa(A4,S) — Spec(4)

has fiber over p given by the set of valuation subrings in k(p) containing the image
of S. The map supp admits a section

s: Spec(A) — Spa(A4, S)

sending p to the trivial valuation A — k(p) — {1} U{0} (or equivalently to the pair
(p, k(p))). Both maps supp, s are continuous. Indeed, if f, f1,..., fn,g € A, then

supp ' (D(f)) = U(?)

and

st i),

Usually the fibers of supp are huge, and exactly the Riemann-Zariski spaces
Spa(K, B)

for a (discrete) field K and a subring B C K. Note that for fi,..., fn,g € K we
get that
f17 MR fn
U(——)
g
identifies with the set of valuation subrings R C K containing B[%, cee f—"], ie.,

g9
U(%):Spa(K,B[ﬁv“’fl

P il
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Example 4.22. Let us give some examples of adic spectra for discrete rings.

(1)

(6)

By Ostrowski’s theorem

Spa(Q,Z) = {xq,z; | p prime}

with xg the trivial valuation on Q (corresponding to the valuation ring
QCQ),and 2, =| —|p: Q = R>¢ the (multplicative) p-adic norm (cor-
responding to the valuation subring Z¢,) € Q). The topological space
Spa(Q, Z) is homeomorphic to Spec(Z).

We can deduce

Spa(Q,Z) = {xq, xp, zr, | p prime}

with 2q, z, as before and xp, the trivial valuation Z — F, — {0,1} (cor-
responding to the valuation ring F, C F,).
Let R be a valuation ring with fraction field K. Then the map

¢: Spa(K, R) — Spec(R), | — | —= {a € R | |a| < 1}

is a homeomorphism. Indeed, as was mentioned after Definition each
valuation subring S C K containing R is the localization R, of R at the
prime ideal mg C R, and conversely each localization of R at a prime ideal
is a valuation ring. If p C R is a prime ideal and f € R, then f ¢ p = pR,
if and only if f € R, and 1/f € Ry. In particular, ¢~ (D(f)) = U(£) N
U(%) and ¢ is continuous. Conversely, let f,g € R. If f/g € R, then

U(g) = Spa(K, R) and @(U(g)) = Spec(R). If f/g ¢ R, then g/f € R
and |g(z)| < f(x)] # 0 for € Spa(K,R). This implies that U(g) =
U(L)NU(2) = o D/ ).

Let k be a field and K/k a field extension of finite transcendence degree.
Then by the valuative criterion for properness

Spa(K. k) = lim |X|
X/k

(as topological spaces) with the (cofiltered) inverse limit running over all
integral proper k-schemes X with generic point identified with Spec(K).
By the existence of blow-ups we see that Spa(K, k) is very huge if K has
transcendence degree > 2. If trdeg(K/k) = 1, then Spa(K, k) = |X| for
X the unique (up to isomorphism) normal, integral projective curve over k
with field of functions K.

Let us describe a way to produce valuations of higher rank. For this, let R
be an arbitrary valuation ring with field of fractions K and residue field k.
Let

p:R—k
be the natural projection. The maps S — ¢(S) and B + ¢~ 1(B) define
mutually inverse bijections between the set of valuation subrings S C K

contained in R and the set Spa(k, {0}) of valuation subrings of k.
Concretely consider a field L and set

R:= L((x))[[t] € K := L((2))((£))-
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Then B := L[[z]] € R/(t) is a valuation ring and

(oo}
S = {Zaiti € R | ap € L[[z]]}
i=0
a valuation subring of rank 2 in K. The associated valuation can be de-
scribed as follows: Consider I' = (1/2)% @ e? with the lexicographic order
such that ¢ is infinitesimally less than 1. Then

K = TU{0}, > aja't! v max{(1/2)’¢" | a;; # 0}.
i,

Let us rephrase the continuity of valuations in terms of valuation rings. For this
let us say that an element v € T' U {0} is cofinal, or topologically nilpotent, if for
any § € I' there exists an n > 1, such that v < §. For example, in the totally
ordered abelian group

= (1/2)% @
appearing in Example 1/2 is cofinal, but € not. Similarly, let us say that an
element in the fraction field K of a valuation ring R is cofinal, or topologically
nilpotent, if its class in K*/R* U {0} is cofinal. Clearly, each cofinal element lies
m meg.

Lemma 4.23. Let (A, A") be a Huber pair, let | — |: A — T'U{0} be a valuation,
and let p := supp(| — |) be its support and R = k(| —|)* C k(p) its associated
valuation ring. Assume that |a| < 1 for a € AT. Then | — | is continuous if and

only if the image of each b € A°° in k(p) is cofinal.

Proof. The “only if” statement is clear. For the converse, let a € A with |a| # 0.
Let Ag C A be a ring of definition and I C Ay a finitely generated ideal of definition.
We may assume that Ag C A", and thus in particular, |c¢| < 1 for ¢ € Ag. From this
and the fact that I is finitely generated and each b € I maps to a cofinal element
in k(p), we deduce that there exists an n > 1, such that I" C {b € A | |b] < |a|}.
This finishes the proof. (I

As the proof of Lemma [£:23] it suffices to show cofinality for generators b € A°°
if an ideal of definition in some ring of definition 4y C A™T.

Let us define a non-archimedean field as a complete non-discrete topological field
K whose topology is induced by a valuation | — |x: K — R>g. We let

Ok =K°={zeK||z|<1}
be its ring of integers, which agrees with the power bounded elements in K.

Example 4.24. (1) Assume that K is a non-archimedean field and let K+ C
K be an open and bounded valuation subring. Then the map

Spa(K, K*) 2 Spec(K+/K*), | = | = {a € K* | |a] < 1}

is a homeomorphism. Indeed, this follows from Example because a
valuation subring S C K defines a continuous valuation if and only if
K°° C myg. In particular, if K+ = Ok is of rank 1, then

Spa(K,Ok) = {x}

is a singleton.
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(2) Valuations A — I' U {0} with I = {1} the trivial group correspond bijec-
tively to the set of open prime ideal in A. In particular, if A is an adic ring
and I C A a finitely generated ideal of definition, then we see that

Spf(A) C Spa(4, A)
is naturally a subspace, which is closed (as it is the vanishing locus of A°°).
Moreover, the map
r: Spa(A,A) — Spf(A4), z— {f € A||f(z)] <1}
is a continuous retraction. Indeed,
r~1(D(g)) = {z € Spa(4, 4) | |g(x)] =1} = {z € Spa(4, 4) | |g(z)| > 1}.

(3) Let K be a non-archimedean field, O its ring of integers, 7 € K a pseudo-
uniformizer and | — | its valuation. Then consider

A= Ok|[[T]]
with its (7, T')-adic topology. The space Spf(A) has one point given by the
open prime ideal y/(m,T). The space Spa(A4, A) is much larger. Indeed, it
is the union of the closed subspace V(r) = {x € Spa(A, A) | |7(z)| = 0},
which has two points, and the open complenent U (%) Given any z € my =
K°°, we get the valuation

Ok|[[T]] = Rso, f = |f(2)],

where f(z) € K denotes the evaluation of f at z € K. Later we will see
that the “generic fiber of Spa(A, A)” is the open rigid-analytic unit disc
over K. This example is particularly interesting because of its relation to
the Lubin-Tate spaces.

4.3. The closed unit ball. Let K be an algebraically closed, non-archimedean
field and denote by
|—]: K = Rxo
its valuation. Let
O ={zr €Ok ||z| <1}

be its “unit ball”, or ring of integers. Let

K(T) :={>_ a;T" | w; € K, |z;| — 0,i — oo}
i=0
be the Tate algebra over K. More or less by definition we have
K(T) = (Ok[T]) 5 [1/=],
where the RHS denotes the w-adic completion of O[T for some w € C with
0<|wl<1.
We want to describe the adic space

Bk := Spa(K(T), Ox(T))

in detail. By definition Bg is the space of (equivalence classes of) continuous
valuations

v: K(T) = T u{0},
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such that v(z) < 1 for x € Oc(T). Consider the Huber pair (K[T], Ok[T]) such
that Ok |[T] is a ring of definition carrying the w-adic topology. It is easy to see
that the natural morphism (K[T], Ok[T]) — (K(T), Ok {(T)) induces a bijection
By = Spa(K[T], O[T
because continuous valuations extend uniquely to the completion as the following
lemma shows.
If A is a Huber ring, let
A:= lim A/U,
Jea
where U runs through the open subgroups of A. We may, by cofinality, assume
that U is an ideal in some fixed ring of definition Ay C A. The closure of the image
of Ag in A is
AO = %DAQ/U,
i.e., the completion of Ag (for the I-adic topology for some finitely generated ideal
of definition I C Ap). By [Stal? Tag 05GG] the inverse limit topology on Ay is
I- AO adic. Moreover, AO - Ais open. From here it is not difficult to see that the
multiplication on A extends uniquely to a continuous multiplication on A7 i.e., the
topological group A is actually a ring, that it is complete and that it is Huber. If
A1 C A is an integral ring, then the integral closure of its topological closure in A
is again a ring of integral AT. We call (A, A") the completion of (A4, A™1).

Lemma 4.25. Let (A, A%) be a Huber pair. Then the natural morphism
Spa(A, A*) — Spa(4, AT)
is a homeomorphism.

Proof. Each continuous valuation v: A — I' U {0} satisfying v(a ) <1lforaec A"

extends uniquely to a valuation A—-TuU {0} which is < 1 on A+, This proves
bijectivity. The continuity of the inverse follows from Lemma O

Let us start by describing the continuous rank 1 valuations
v: K[T] — RZO

with v(z) <1 for z € O [T]. We will always implicitly assume that v extends the
valuation | — | on K. An important example is the valuation defining the “Gauss
point”, i.e., the valuation

Vo1 K[T] — RZ()? f = Z.’EZTl — m?x{|xl|}
i=0
(the notation will be clear later). More generally, we have the following examples
of valuations.

Lemma 4.26. Let ¢ € Ok. For each r € [0,1] the function
Ver: K[T] = Rxo, f Z% L max{\ml\r g

is a continuous valuation. Moreover,

Ver(f) = sup{[f ()] [ = € B(c,7)}
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for f € K[T], where
Ble,r):={x e K ||z—c <r}

is the “closed” ball of radius r centered at ¢ € K.

Proof. Except

Vc,r(fg) = VC,’I‘(f) + VC,T(g)
for f,g € K[T] all properties of a continuous valuation are easily verified. We
may assume ¢ = 0 and show that 1, is a valuation. In particular, vy, satisfies
the strong triangle inequality. We may assume that f = T — a for some a € K
by factoring f (here we use our assumption that K is algebraically closed). First,
assume that

vor(a) =la| # v, (T) =1

Then
VO,T(Tg) = TZ/O,T(g) # VO,T(ag) = |a|V0,r(g)'

This implies
VO,T((T_a)g) = maX{r+V0,r(g)v |a|+VO,T<g)} = max{r, |a|}+VO,r<g) = VO,T(T_G>+VO,T(9)
by the strong inequality. The case r = |a| follows from this as the function

re [O, 1] — V07T(h) S Rzo
is continuous for any h € K[T]. Similarly the functions

fr=sup{[f(2)] [ 2 € B(O,7)}

for r € [0, 1] are continuous valuations, i.e., satisfy multiplicativity. That they agree
with the vg , follows by equating both on 7' — a,a € K. O

We can now classify the rank 1 points in Bg.

Lemma 4.27. Let v: K[T] — Rxq be a continuous rank 1 valuation with v(f) <1
for f € Ok[T]. Then there exists a family B(xz;,r;),i € I, of nested discs with
x; € Ok, r; €[0,1], such that

V(f) = H}f{yxuh(f)}
Proof. We set I = Ok, z; ;=1 € Ok and r; = v(T —z;) € [0,1]. If r; <7;, then

B(z;,m;) € B(xj, 7).
Indeed, if a € B(x;,7;), then

la — z;| < max{|a — z;|, |z; — z;|} <max{|la —z;|, V(T — x;),v(T —x;)} =1y,
i.e., the family B(x;, ;) consists of nested discs. Note that the disc B(x;, ;) depends
only on r; = v(T —x;). Let y € K and i € I. If (T —y) > r;, then
|z =yl =max{v(z = T),v(T —y)} =v(T - y)
for z € B(x;, ;) as by the above calculation v(z — T') < r;. Thus,
V(T - y) = VJJi,Ti(T - y)

If v(T —y) <y, then By, v(T —y)) < B(z;,7;) and

V(T —y) = sup  {lz—yl} S vp 0 (T — ).
2€B(y,v(T—y))

It suffices to test equality on the T'— y,y € K. This implies the claim. ([
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Note that from the proof we see that
v(f)=_inf {[f(y)[}

yeBn,rn

with discs
Bl,rl :_) BQ,TQ :_)
for n € N such that their radii r,, are a decreasing sequence of elements in [0, 1].
With Lemma proven, we can classify the rank 1 points on Bg. They fall
into four types of points.

1) Assume that r, — 0,n — oo and (B,,, = {z} for some (necessarily
n

unique) € Ok. Then v is the valuation
Vg0t K[T] = Rxo, f = [f(z)].
2) Assume that r,, — r > 0,n — oo with r € |[K*|. Then

V =Vg

for some x € K.
3) Assume that 7, — r > 0,n — oo with r ¢ |K*| (such points can only exist
if K has not value group R(). Then

V="VUz,

for some z € K.
4) Assume that r,, — 0,n — oo, but (B, ., = 0 (this strange property can

happen if K is not so-called spherically complete). Then
v=inf{vy, , }

if By, = B(zp,rn).
For x € Ok define
fo:00,1] = Bg, 7 — vy .

The map f, is not continuous as the open subsets in Bx are defined via non-strict
inequalities. It is anticontinuous in the sense that the preimages of quasi-compact,
open subsets are closed.

Clearly,

fo(1) = w01

is the Gauss point for all x € Ok. Thus, for each x € Ok we can draw an interval
from it to the Gauss point. Note that

Vyor = Vyr
if and only if
B(x,r) = B(y,r).
In other words, the functions f;, f, meet at r = |2 — y| (the tree is “branching”).

Note that a branch point is of type 2). Let us now look at a type 4) point which is
given by a nested sequence of discs

B(xl,rl) 2 ]B(ZL’Q, 7‘2) D

with r; — 0,n — oo. Then we can picture it as the “dead end of the tree”, which is
given by first moving from the Gauss point f;, (1) to fu, (Jz1 — x2|), then switching
to the branch determined by xo and move from f,, (|z1 — x2|) = fo,(|x1 — 22|) to
fus (JT2 — 23]), then switch to the branch determined by x3 and so on.
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We now classify the higher rank valuations on Bx by relating them to the rank
1 points, which we already know. We use the following observation. Let (A, AT) be
a Tate-Huber pair (like (K[T], Ok|[T])) and let w € A a pseudo-uniformizer, i.e., a
topologically nilpotent unit in A. For each z € Spa(A, AT) the image of w € k(x)™
is a non-zero, cofinal element. A valuation ring R possessing a non-zero, cofinal
element is called microbial.

Lemma 4.28. Let R be a microbial valuation ring, and w € R a non-zero cofinal
element. Then

pi= V(@)
is a prime ideal, which is the unique prime ideal of R of height 1.
Proof. As radical ideals in valuation rings are prime, p is a prime ideal. Assume
that
{0} S q
is a prime ideal. We claim that p C q. Let = € q\ {0}. As w is cofinal, there exists
some n > 1, such that w™ € (x). In particular,

p=+V(@w) S V() <Sq
as desired. O

In particular, R, C K := Frac(R) is a valuation ring of rank 1.

Exercise 4.29. Let T be a valuation ring of Krull dimension 1 with fraction field
L. Show that there exists an injection
L*/T* = Rso
of totally ordered abelian groups.
Note that R, defines another continuous valuation of A and this point Z of

Spa(A, AT) is the unique rank 1 generalization of # € Spa(A, AT) whose residue
field is k(x). In fact, this condition is automatic.

Lemma 4.30. Let (A, A") be a Tate-Huber pair and z,y € Spa(A, AT) be two
points such that y is a specialization of z. Then

k(y) = k(z),
i.e., specializations in Spa(A, AT) only happen in the fibers of Spa(A, AT) — Spec(A).
Proof. Assume that k(y) # k(z). As Spa(A4, AT) — Spec(A) is continuous and thus
preserves specializations, we can conclude that there exists some f € A such that

fly) =0 € k(y) and f(z) # 0 € k(z). Let w € A be a pseudo-uniformizer. Then
we know that

[@"(2) < |£(2)]
for some n > 1. In particular, z € U(an) On the other hand, y ¢ U(an) as
|eo™(y)| # 0 because w is a unit in A. This shows that y is not a specialization of
z, which is a contradiction. ([l

Given & we can find back z via Example [£.22] Indeed by Lemma [4.30] and
Lemma the y € Spa(A4, A"), which are a specialization of Z are in bijection
with valuation subrings S C k() contained in k(Z)", which contain the image of
AT. This set is by Example in bijection with

Spa(r (i), AL),

x
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where k(%) is the residue field of the local ring k(#)* and A7 the image of AT
under the composition
AT = k(@) — k(T).

Let us come back to Bx = Spa(A, A*) with A = K[T], At = K|[T], and calculate
the specialization for all rank 1 points x € Bx. We denote by x the residue field of
Ok.

1) Let ¢ € Ok. Then z := v, has residue field K = K[T]/(T —¢). As Ok
is of rank 1, the point v, does not admit any specialization. In this case,
k(z) = Af = k.

2) Let ¢ € Ok, and r € (0,1) N |K*|. Let us first assume that r = 1, i.e,,
Z =1, is the Gauss point. In this case,

k(z) = K(T), AF = &[T).
Therefore,
If r < 1, then (k(z), A}) = (k(T"), k) where T’ = L with |¢| = r. Indeed,
B(x,r) = Spa(K(T'/c), Ok (T/c)),
but the relevant A} is not the image of Ok (T/c) but of Ok[T]. But
vpr(T) =1 <1, ie., the image of Og[T] in k is just x as claimed. Thus,

Spa(s(x), AF) = P, ()

Spa(k(z), A7) = A (k).
)

in this case.

3),4) In these cases the point becomes a point of type 2) over some extension K’
of K (which can assumed to have the same residue field x) and using the
case 2) one checks that the relevant pair is (k(x), A}) = (k, ). Thus there
are no non-trivial specializations of these points.

The points on Bg corresponding to valuations of rank > 1 are called of type 5).
Concretely, if I' = v% x R+ with 7 infinitesimally less than 1, then the specializa-
tions of the point v, , are given by

f= 3wl — o) > max{fail ()}
i=0
for |a — x| = r, and, if r < 1, the point
f=Y 2T —a)— miaX{|xi|(7“7)_i}
i=0
for |a — x| = r (for r = 1 this valuation does not satisfy that it takes value < 1 on

OkIT)). From the above we now finished the classification of points on B

4.4. Spa(A, A") is a spectral space. In this section we want to prove that the
topological space

Spa(A, A™)
of continuous valuations for a Huber pair is a spectral space. Let us define what
this means.

Definition 4.31. A topological space X is spectral if it is quasi-compact, has a
basis of quasi-compact open subsets, which is stable under finite intersections, and
every irreducible closed subset admits a unique generic point.
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The typical example of a spectral space is the spectrum Spec(R) for some ring R.
Here, the required basis for the topology is given by the sets D(f) with f € R. Up
to homeomorphism each spectral space is of this form. In fact we have the following
characterization of spectral spaces. Recall that topological space X is called Ty if
for any z,y € X distinct there exists an open subset U C X such that x € U and
y¢UoryeUandz¢U.

Theorem 4.32 (Hoechster, cf. [Stal7, Tag 08YF]). Let X be a topological space.
The following conditions are equivalent:

(1) X is a spectral space,

(2) X is homeomorphic to Spec(R) for some ring R,

(3) X is the topological inverse limit of finite Ty-spaces.

A morphism f: Y — X of spectral spaces is called spectral if it is quasi-compact,
i.e., f71(U) CY is quasi-compact open if U C X is quasi-compact and open.
We will need the following statements, which describe valuations via their divis-
ibility relation.
Lemma 4.33. Let R be a ring, v: R — I'U{0} a valuation and | the binary relation
alb:=v(a) <wv(b)
fora,b € R. Then | depends only on the equivalence class of v and satisfies
(1) alb or bla,
) if alb and blc, then alc,
) if alb and alc, then alb+ c,
) if a|b, then aclbe,
) if aclbe and 0 1 ¢, then alb,
(6) 011
for a,b,c € R. Conversely, each binary relations on R satisfying these equations
arises from some unique equivalence class of valuations.

Proof. This is clear except that a binary relation satisfying these equations defines
a unique equivalence of class of valuations on R. Let M be the set of equivalences
for the relation

a ~ b if and only if a|b and b|a,

and for a € R let [a] € M be its equivalence class. The multiplication on R defines
the commutative monoid structure

la] - 5] = [ab]

on M. If [a], [b] # O, then [ab] # 0 and thus M \ {0} is a monoid (with unit 1) as
well. Moreover, in M \ {0} multiplication is cancelable. Set

[a] < [b] if bla.

Then M \ {0} is a totally ordered abelian monoid, and its group completion T is a
totally ordered abelian group. The map

R —TU{0}, a~ [d]
defines the desired valuation. O

Lemma 4.34. Let (A, A") be a Huber pairs. Then each closed irreducible subset
of Spa(A, A*) contains a unique generic point.
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Proof. We first show that Spa(A, AT) is Ty, which implies that generic points are
unique (if they exist). If x,y € Spa(4, A") are distinct valuations, then (up to
permuting z,y) by the definition of equivalence of valuations there exists f,g € A
with

|f(@)] < lg(=)],
but

[F W) > lg(w)l-
If g(x) # 0, then U(g) is open and contains x, but not y. If g(z) = 0, then f(z) =0
and U(%) contains y but not z. Let Z C Spa(A4, A™) be a closed irreducible subset.
We use Lemma and define the binary relation | on A by requiring that

alb
for a,b € Aif Z CV(b)NV(a) or U(2)UZ # 0, where

V(e) = Spa(4, AN\ U ()

is the vanishing locus of some ¢ € A. Tt is easy but tedious to see that | satisfies the
assumptions of Lemma and thus defines a continuous valuation v: A — T'U{0}.
The irreducibilty of Z is needed to ensure that two open non-empty open subsets
have non-empty intersection. (I

Let us now introduce the desired basis of quasi-compact open subsets. Here the
following subtelty arises: for fi,..., fn,g € A the open subset U (%) need not
be quasi-compact. For example, if A = K(T') for a non-archimedean field K, then

U() =B\ {0} € B = Spa(K(T), 04(T)

is the punctured closed unit disc, which is not quasi-compact (in particular, the
inclusion Spa(A, AT) — Spv(A, A1) is not spectral in general).

To circumvent this problem we introduce rational open subsets. Namely, we call
the distinguished open subset

oty € spaa an

a rational open subset if fi,..., f, generate an open ideal of A.

Proposition 4.35. Let (A, AT) be a Huber pair, let f1,..., fn,g € A such that
fi,..., fn € A generate an open ideal in A. Then

U(%) ~ Spa(B, BY)

(as topological spaces) for a Huber pair (B, BT).

The Huber pair (B, B1) constructed in the proof depends on fi,..., fn,g € A,
but we will see in Proposition that its completion only depends on U (%)

Proof. If A is discrete it is clear that

fla"'afn 1 fl,“'afn
LTIy o Gy (A=, AT [ AR
U( 7 ) = Spv( [g], [

paml
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(as sets) because any valuation v: A — T'U {0} with v(g) # 0 extends uniquely to
the localization A[é], and the condition

v(fi) <v(g) #0

is equivalent to v/( fq ) < 1. Clearing denominators of elements in A[1/g] shows that

fa"'vfn ~ flv“'afn
J )—p(A[g] M 7 1)

as topological spaces. Thus, we have to endow A[%} with a ring topology 7 making

U(———

A[l/g] into a Huber ring such that some point

+ f17 ) fn
T € SpV(A[g] AT [ ; )
restricts to a continuous valuation on A along A — A[l/g] if and only if = is
continuous. Let Ag C A be a ring of definition with finitely generated ideal of
definition I C Ag. Set

fl fn

By : —Ao[g ]CB All/g]

and equip By with the J := I- B-adic topology. We equip B with the unique topol-
ogy making B into a topological group such that the J,n > 0, form a fundamental
system of neighborhoods of 0. We have to see that B is a topological ring, i.e., that
the multiplication B x B — B is continuous. It suffices to show that for each h € B
the multiplication by h is continuous. This is clear for elements in the image of
A — B. Hence, it suffices to prove that multiplication by 1/g is continuous on B.
We need to to see that
A+ ...+ fI'CA

is open for any [ > 1. Because granting this, there exists some m > 1 such that
ImcC fil' + ...+ f.1

which implies

Il cI' A [é,...,f—”]:ﬂ,

g )

thus 1/g - J™ C J! and therefore contlnuity of multiplication by 1/g. Let T :=

{f1,-.-, fn}. By assumption the set
T - A=fiA+.. ..+ f,A

is open in A. Let k > 1 such that I* C T - A. Replacing I by I* we may assume
that I C T - A. Let S C I be a finite set of generators and V C A finite such that
S CT-V. As each finite set is bounded there exists m > 1 such that V - I™ C I,
Now

g

mtt=g.rmcr.v.rmcr-r
proves that T - I' is open as desired. O

As rings/ideals of definition are cofinal the topology introduced on B in the proof
of Proposition [£:35] does not depend on the choice of Ay, I.

Lemma 4.36. Let (A, AT) be a Huber pair. The rational open subsets form a basis
for the topology on A, stable under finite intersections.
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Proof. Let f1,....fn=29,9,f1,---, [}, =9, g € A such that
(fla"'afn)A7(f{7"'7f7/n)A gA

are open. We have

fla"'vfn f{)af',/n _ flf{v---7f7zf7ln
and the ideal

(flf{vafnfr/n)A =C (fla'“afn)A'(f{v"'vagz)A

is open. This proves that the rational open subsets are closed under intersection.
Fix a ring of definition Ay C A and a finitely generated ideal of definition I =
(m1,...,m) C Ag. If f,g € A are arbitrary, then

m m
U(i): UU(f,W17...,7Tn)
g me1 g
by continuity of valuations, and
(f7 7(-1”7 s 77TZL)A

is open. This proves that the rational open subsets are a basis for the topology. [
We want to present the following theorem of Huber, cf. [Hub93l Theorem 3.1.].

Theorem 4.37. Let (A, AT) be a Huber pair. The topological space Spa(A, AT)
is spectral, and its rational open subsets are a basis for the topology consisting of
quasi-compact open subsets, which is stable under intersections.

Proof. By Lemmal4.36} Proposition Lemmal4.34]it suffices to see that Spa(A, A™)
is quasi-compact. This will be proved in Proposition [£.42] O

To finish the argument we introduce the constructible topology on spectral
spaces.

Definition 4.38. Let X be a spectral space. Then the constructible topology on X
is the topology generated by U and X \ U for U C X quasi-compact and open. We
let Xeons be X equipped with its constructible topology.

Clearly, there exists a natural morphism
Xeoons = X

and a spectral morphism f: Y — X of spectral spaces induces a continuous mor-
phism feons: Yeons —+ Xcons- When

o
with X, finite Ty, then X ons = %iLnXLdm and in particular, X.ons is profinite.

From here it is not difficult to dedulce that if Z C X is closed in the constructible
topology, i.e., “pro-constructible”, then Z with the subspace topology on X is a
spectral space.

For more details, see [Stal7, Tag 08YF].

To prove the missing quasi-compacity of Spa(4, A*) we construct now a contin-
uous retraction r: Spv(A4, A1) cons — Spa(A4, AT), where

SpV(Aa A+)cons
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is (a posteriori) the spectral space Spv(4, A™) with its constructible topology (but
beware that we don’t know yet that Spv(A, AT) is spectral). Let Ag C AT be a ring
of definition and I C Ay a finitely generated ideal of definition. For z € Spv(4, A™)
let

Ry = k(z)t Ck(z)
be the associated valuation ring, and
0 AT = R,
the natural morphism. We set
R, == R, /( ﬂ @z (1)").
n>1

By Lemma m the elements in I map to cofinal elements in the valuation ring R,.
By Lemma this implies that the morphism

At >R, > R,
defines a continuous valuation on A™.

Lemma 4.39. Let S be a valuation ring, and J C S a finitely generated ideal.

Then p := () J* C S is a prime ideal, S := S/p is a valuation ring, each j € J
n>1

maps to a cofinal element in S and S is the largest quotient of S with this property.

Proof. The ideal J is principal, say J = (s). It suffices to see that p is a radical
ideal, but if v: S — I" U {0} is the valuation of S, and f € S;m > 1, with f™ € p,
then v(f) <w(s™) for alln > 1 as

my(f) =v(f™) < v(s™) =m < p(s).
Quotients of valuation rings, which are integral domains are again valuation rings
as their ideals are linearly ordered, cf. Definition The cofinality of s in S is
clear and also that S is the largest quotient having this property. ([l
We need to extend the continuous valuation
ve: AT =T, U{0}
associated with the morphism
AT - R,
to a continuous valuation on A. If |x(z)| = 0 for all 7 € I, then R, = R, and

nothing has to be done. Otherwise, v, extends uniquely to a continuous valuation
on A as the next lemma shows.

Lemma 4.40. Let v: AT — T'U {0} be a continuous valuation, and assume that
there exists some m € A°° such that v(m) # 0. Then v extends uniquely to a
valuation on A.

Proof. For each a € A there exists some n > 1 such that 7"a € A*. The unique
extension of 7 is then given by

a— v(m) "v(r"a).
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Altogether we constructed for each z € Spv(A, AT) an element
(12) r(x) € Spa(4, A™).

We denote by Spv(A, A™)cons the set Spv(A4, AT) equipped with the “constructible”
topology for which the sets

Ji,- o fn
U
( 7 )
for f1,..., fn,g € A are open and closed. The next lemma finishes the case that A

is discrete.

Lemma 4.41. The space Spv(A, AT)cons 8 profinite, and thus in particular quasi-
compact.

Proof. For x € Spv(A, AT )eons let |, the associated binary relation
al;b if and only if |a(x)| > |b(x)|

on A. By definition a binary relation on A is a subset of A x A. Let P(A x A) &

1T {0,1} be the power set of Ax, which is naturally a profinite set. By Lemmal4.33
AxXA
the map

12 Spv(A, AT ) cons — P(A x A), x> |,
is a closed embedding. Indeed, for f,g € A let ms4: P(A x A) — {0,1} be the

projection on the (f, g)-component. Then W;;(l) identifies with binary relations |
on A satisfying f|g. Let f,g € A. Then the set

(i, (1)) € Spv(A, AT cons

is open as it is the union of the open sets

f

U(E)’ Spv(A, A" )cons \ U(g) N Spv(A, AN cons \ U(9

7

Given f,g € A we see that

ULy =1 )\ mg k1),

This implies that Spv(A, A™)cons carries the subspace topology of P(A x A). The
set of binary relations | satisfying that for all f,g € A we have f|g or f|g is therefore
the closed subset

!
9

U s U (i (0) N, j (1)),

f9€eA
and similarly for the other equations from Lemma In particular, the image of
¢ is closed and hence Spv(A, A™)cons is profinite. O

The next proposition finishes the proof of Theorem [4-37}
Proposition 4.42. The map
7: Spv(A, A1) cons — Spa(4, AT)

constructed in (Equation ) is continuous. In particular, Spa(A, AT) is quasi-
compact.
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Proof. By Lemma it suffices to show that »=1(U) is open for every rational
open subset U C Spa(A4, AT). Let fi,..., fn,g € A such that (f1,...,fn)a C A is
open. Then

_ f17"'7fn f17"'7fn
T 1(USpa(A,A+)(T)) = USpv(A,A+)(T)a
where the subscript is added for clarifying where we consider the distinguished open
subset. The map r is natural with respect to the morphism (A, AT) — (B, BY)

constructed in Proposition This implies that
flv"'?fn "afn

f1,-
T(USpv(A,A+)(T)) - Uspa(A,Aﬂ(lT

Conversely, assume that = € r’l(USpa(AyAﬂ(%)). Then

w € {y € Spv(4,AY) [ |fily)| < lg(y)l,i=1,...,n}
and we have to show that g(x) # 0. Let I C Ay be an ideal of definition in a ring
of definition of A. If g(x) = 0, then 7(z) = 0 for all winI as (f1,..., fn)a is open.
In particular, r(z) = x, and thus g(z) # 0, which is a contradiction. Hence, r is
continuous. By Lemma the map r is a retraction for the inclusion
Spa(A, AT) — Spv(4, A1),

in particular, we can deduce from Lemma that Spa(A, AT) is quasi-compact.
[l

).

We mention the following compatibility of rational open subsets under comple-
tions.

Lemma 4.43. Let (A, A") be a Huber pair. Then the natural map (a bijection by

Lemma
Spa(A, AT) — Spa(A, At)
identifies the sets of rational open subsets.

Proof. This is [Hub93| Proposition 3.9] or [Mor19, Theorem II1.3.1.]. The crucial
point is to approximate f1,..., fn,g € A such that (fi,..., fn)a by elements in A
without changing U (%) O

In the complete case we get that Spa(4, A1) is “large enough”.

Lemma 4.44. Let (A, A") be a complete Huber pair, i.e., A is complete. Then
(1) Spa(A, AT) =0 if and only A =0,
(2) At ={feA||f(x)] <1 for all x € Spa(A, AT)},
(3) an element f € A is invertible if and only if |f(x)] # 0 for all x €
Spa(4, AT).

Proof. This can be found in [Hub93, Proposition 3.6. |, [Mor19, Section IIT.4.4.] and
[SW20, Proposition 2.3.10.]. The last statement also follows from Lemmam ]

Moreover, we note the following.

Lemma 4.45. Let (A, AT) be a complete Huber pair, and T = {t1,...,t,} C A a
finite subset. Then the following are equivalent:

(1) The ideal generated by T is A.

(2) For each x € Spa(A, AT) there exists some t € T with |t(x)| # 0.



LECTURE NOTES ON LUBIN-TATE SPACES 119

In this case, U(%) fori=1,....n form a covering of Spa(A, AT) by rational
open subsets.

Proof. This is [Mor19l, Corollary 111.4.4.3.]. O

4.5. The adic spectrum of a Huber pair. Let (4, A*) be a Huber pair. We
want to endow

X :=Spa(4, A™)

with a structure presheaf X (of complete topological rings), and prove that it is a
sheaf if A admits a noetherian ring of definition. As rational open subsets U C X
form a basis of the topology on X by Lemma [4:36] it suffices to discuss them.

The crucial statement is then the following.

Proposition 4.46. Let (A, AT) be a Huber pair and U C X := Spa(4,A") a
rational open subset. Then there exists a complete Huber pair (A, AT) — (Ay, Af)
such that Spa(Ay, Af;) has image U and for every complete Huber pair (A, A*) —
(C,CT) such that Spa(C,CT) — Spa(A, AT) has image in U there exists a unique
factorization

(4, A%) — (Ay, A7)

g

(C,CH).
Proof. Let fi,..., fn,g € A such that (fi,..., fn)a C A is open and

fla"'vfn
U=U(——).
( p )

The crucial point is the following. If (C,CT) is complete such that Spa(C,CT) —

Spa(A, AT) has image in U, then by Lemma g is invertible in C, and % eCt

for all i = 1,...,n. This implies that there exists a unique morphism A
(B84~ (")

with (B = A[1/g], BT) the Huber ring constructed in Proposition By Lemma

the completion (A, Af;) of (B, B) satisfies the desired properties. O

If V C U is an inclusion of rational open subsets of X, then by the universal
property of (Ay, A;}) we get a natural morphism

Tuv: (AUa Aﬁ) - (AVa A$)
of Huber pairs over (A, A™1).

Definition 4.47. The structure presheaf Ox on X is the presheaf on the basis of
rational open subsets given by

Ul—>AU

and the restriction ryy. Similarly, the +-version of the structure presheaf Oj} on
X is

U Af.
A Huber pair (A, A7) is called sheafy if Ox is a sheaf.
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For each z € X the valuation
| — (2)]: A—=TU{0}
extends naturally to a valuation | — (z)| on the stalk

OXa: = hg’l Ox(U)

)
UCX rational open,zeU

of Ox at . By Lemma 4.44
Ox(U) ={f € Ox(U) | |f(x)| < 1}.

In particular, (’);2 is a sheaf if Ox is a sheaf.
We mention the following criterion for sheafiness.

Theorem 4.48. Let (A, AT) be a Huber pair. Then (A, A1) is sheafy if

(1) A is discrete, or
(2) A is finitely generated over a noetherian ring of definition.

There do exist more (important) cases when (A, AT) is sheafy, for example when
A is a strongly noetherian Tate ring, i.e., A is Tate and A(T1, ..., X,,) is noetherian
for each n > 0, cf. [Mor19, Theorem IV.1.1.5.].

Sending a complete Huber pair (R, RT) to the adic space Spa(R, R") is fully
faithful, cf. [Morl9, Proposition I11.6.4.4].

Our case of interest are adic spaces associated to locally noetherian schemes,
i.e., adic spaces which are locally of the form Spa(Ag, Ag) for an adic noetherian
ring, or rigid-analytic varieties over some discretely valued non-archimedean field
K, i.e., adic spaces which are locally of the form Spa(A, A°) with A a quotient of
some Tate algebra K(Xi,...,X,) over K.

Given the category of adic spaces, we can now achieve our aim to pass to “generic
fibers” of formal schemes. Fix a discretely valued non-archimedean field K with ring
of integers Ok . In the affine case, the passage to the generic fiber is the following.
Let Ag be a noetherian adic ring. Instead of Spf(Ag) we consider the adic space
X := Spa(Ag, Ag). The “generic fiber of Spf(Ap)” is then the fiber product

Xy =X Xspa(0x,0x) Spa(K, Ok)
in the category of adic spaces. Alternatively, the generic fiber is the open sublocus
{reX[|r(x)]#0}C X

for 7 € Ok a uniformizer. As a concrete example, the generic fiber of the for-
mal scheme Spf(Og (T)) is the closed unit ball Spa(K(T), Ox(T)). In general the
generic fibers of affine formal schemes need not be affinoid, e.g., the generic fiber
of Spf(Ok[[T]]) (with Ok][T]] given the (m,T)-adic topology) is the non-quasi-
compact open unit disc

DKv

which is the interior of the closed (!) locus

{z € Bk | || < 1}.
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If (R, RT) is a complete Huber pair over (K, Ok) we can describe the (R, R")-
valued points of Spa(A), for A a noetherian adic Ox-algebra. Namely,
Spf(A),(R,R™T)
= Hom(OK,OK)((A7A)a(R7R+))

= 11411”1 Hom(’)K,cts(A, Ro)
RoCR* ring of definition
- by SpE(A)(Ro),

RoCR* ring of definition

cf. [SW13, Proposition 2.2.2]. Note that the topological ring RT need not be
admissible, and thus evaluating Spf(A) on R™ does not in general make sense.
However, each ring of definition Ry C R* is m-adic, and hence

Spf(A)(Ro) = lim Spf(A)(Ro/7").



122 JOHANNES ANSCHUTZ

5. THE GROSS-HOPKINS PERIOD MORPHISM

Let A be a complete discrete valuation ring with finite resiude field k of char-
acteristic p and cardinality ¢q. Let K := Frac(A) be the fraction field of A. Fix
a uniformizer m € A and a w-divisible formal A-module G}, over Spec(k) of height
h e Z21~ Let

M= Mgz g = H MRz.6.n
ne”Z
be the associated Rapoport-Zink/Lubin-Tate space. In this section we want to
present the construction of the Gross-Hopkins period morphism

d h—1,ad
TGH - M,a, — PK R
which is an étale surjective covering of the adic h — 1-dimensional projective space

by the adic generic fiber M?Id of M, and which is equivariant for some to be defined
action of the quasi-isogenies of Gj,.

5.1. Outline of the construction. Let (B, BT) be a complete sheafy Huber pair
over (K, A). By construction,

MpY(B,BT) = lim M(By) = lim lim M(By/x"),
BoCB+ BoCB+ n
where By runs through the rings of definition contained in BT. On the other hand
Pic (B, BY)

parametrizes the set of isomorphism classes of invertible B-modules £ together with
a surjection
B" - L.
In other words, we have to associate with any m-complete w-torsion free A-algebra
R (like Bp) and any pair
(G, ) € M(R)
of a formal A-module G over R with a quasi-isogeny
a: GORR/m -+ GuOrR/T,

a natural invertible R[1/w]-module £ together with generating (over R[1/7]) ele-
ments

€y Ch1 € L.
The line bundle £ is easy to construct: As G is one-dimensional its Lie algebra
Lie(G) is an invertible R-module, and we can set

L := Lie(G)[1/7].

We saw in Proposition that necessarily Lie(G) = R is free. In particular, there
exists a lot of possible choices for the cg,...,c,_1 and our task is to find some
particularly interesting ones. This will be done as follows. For any m-complete
m-torsion free A-algebra R we construct a functor (for A = Z, this is an instance
of the covariant crystalline Dieudonné functor for p-divisible groups)

M(—): FGa r—dgiv(R/m) — {finite, locally free R — modules}

from the category of w-divisible formal A-modules to finite locally free R-modules
such that

M(9)
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has (constant) rank A if G has (constant) height h, and M (—) is compatible with
base change in R. Moreover, given a w-divisible formal A-module G over R we
construct a natural surjection

M(G&rR/m) — Lie(G).

Given this data the construction of the Gross-Hopkins period morphism can be
finished as follows. Let R be a m-complete, m-torsion free A-algebra and (G, ) €
M(R). Then the quasi-isogeny

a: GORR/m --» G R/ T

defines an isomorphism

M(Gn) ®a R[L/7] = M(GuéuR/m)[L/x] = M(GorR/m)[1/x],
and the surjection

M(Gn) @4 R[1/7] = M(G&rR/)[1/7] - L = Lie(G)[1/7]

defines the desired point in
Py 1 = P(M(Gp)[1/7])™

Using the Lubin-Tate formal Ap-module for the ring of integers in the unramified
degree h extension of K, we can then find explicit generators of

M(Gp)[1/n],
which yield the desired sections cg,...,cp—1 of L.

5.2. Quasi-logarithms. Let R be a m-complete m-torsion free A-algebra and G a
formal A-module over R. We assume that

G=Gr

for some formal A-module law F' € R[[X, Y]], [a]r € R[[X]],a € A, and later explain
how the following constructions can be made to depend only on G.
We set

R :=R®a K.

Definition 5.1. We call a series g(X) € Ri[[X]] with g(0) =0 a quasi-logarithm
for F if its derivative ¢'(X),

Ag(X,Y) :==g(X) +9(Y) — g(F(X,Y))
and

0ag(X) := a-g(X) = g(la]r (X)), a € 4,

have coefficients in R[[X]]. We call a quasi-logarithm integral if g(X) has coeffi-
ctents in R.

Clearly, the quasi-logarithms form an R-submodule of Ri[[X]]. For example,
each R-multiple of log(X) € Rk [[X]] is a quasi-logarithm. In fact, the R-multiples
of the logarithm are precisely those quasi-logarithms ¢g(X) such that

Ag(va) =0, 5ag(X) =0,a€A

as we require that ¢’(0) lies in R.
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Definition 5.2. We set
M(G)Y := {quasi-logarithms for F}/{integral quasi-logarithms},
and call it the contravariant Dieudonné module of G.
The searched for functor M (—) will map a 7w-divisible formal A-module Gy over
R/7 to
Homp(M(G)", R),
where G is any lift of Gy to R. Using abuse of notation this means that
M(G) := Homg(M(G)V,R) = M(G&rR/T)

for a w-divisible formal A-module G over R. For this construction to make sense and
satisfy our desiderata from Section [5.I] we have to prove the following statements
for m-divisible formal A-modules:

(1) M(G)V is a finite, locally free R-module of rank & if the m-divisible formal
A-module G over R is of constant height h,

(2) M(G)Y depends, up to canonical isomorphism, only on the reduction G /7
of G,

(3) M(—)V is functorial in morphisms of 7-divisible formal A-modules over
R/,
(4) there exists a natural surjection
M(G) — Lie(G).
It is clear that there is a natural exact sequence
0 — Homz(G,G,) = R-logr — M(G)V.
If G is m-divisible then R
Homp (G, Gy) = 0,
and thus we get an injection
R-logp — M(G)Y
is injective. Note that canonically
w(G) = Rlogp
by “integrating” invariant differential forms, cf. Section We want to describe
the cokernel of
w(@) = M(G)"
concretely via deformations of G. Recall that
Rle]=R®eR
with €2 = 0.
Lemma 5.3. Let g(X) € R[[X]] with g(0) = ¢'(0) =0, and let f(X) =logp(X) €
Ri[[X]] be the logarithm of F. Then g(X) is a quasi-logarithm for F if and only
if the series

fo(X) = f(X) +e9(X)
is the logarithm of formal A-module law Fy(X,Y) € R[e][[X,Y]].

Necessarily,

Fy(X,Y) = [ ([o(X) + fo(Y), [alr, (X) = fy H(a- fo(X))
for a € A.
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Proof. Write
fHX) = f7HX) + - g1(X)
with g1(X) € Ri[[X]]. Then
g1(X) = —f'(F71 X)) g(fHX)).
We get (using €2 = 0)
Fy(X,Y)
=fq (f3(X) + f4(Y))

— () fy(Y)) — e

f'(F(X,Y))
(9(X) +9(Y) = g(F(X,Y)))).

9(F(X,Y))

=F(X,Y)+ 6(7f’(F(X )

We know that

FY) = (520,) € RI[X]

by Section In particular, f/(F(X,Y)) is unit in the ring R[[X,Y]]. We can
deduce that Fy(X,Y") has coefficients in R if and only if

9(X) +9(Y) — g(F(X,Y)) € R[[X]].
Let a € A. Then we similarly see that

[alr, (X) = fy " (afe(X))
has coefficients in R if and only if ag(X) — ¢g([a]p(X) has coefficients in R. If f,

is the logarithm of a formal A-module over Rle], then its derivative has coefficients
in R[e] by Section This finishes the proof. O

From the proof we see that in Definition [5.1| we could equivalently demand that
¢'(0) € R instead of ¢'(X) € R[[X]].
From the proof of Lemma [5.3] we can record:

13 EQ(X,Y) ZF(X, Y) —|—€Ag(X,Y)h(F(X, Y))
(13) (a], (X) = [alr () + 6a9 (XA ((a] (X))

for a € A, where
hY) = or (0,Y) € R[[Y]]
C0Xx '

Note that the formal A-module F,[a]F,,a € A can be defined for any quasi-
logarithm ¢ for F, i.e., not just for those with ¢’(0) = 0.

Definition 5.4. We let

Defr(RIe])
be the set of equivalence classes of formal A-module laws F' € Re][[X, Y]] reducing
to F modulo €, with equivalence given by isomorphisms inducing the identity modulo
€.

As a finite projective R[e]-module M is finite free if and only its base change
M ®pgje) R is finite free, Defr(R]e]) could equivalently be defined via deformations
Defg(R]e]) of the formal A-module G.

As in the proof of Theorem[2.34] we see that De fr(Rle]) is naturally an R-module.
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Lemma 5.5. If G is w-divisble of constant height h, then the R-module Defr(R|e])
is finite free of rank h — 1, and for a morphism R — R’ of w-complete, m-torsion
free A-algebras the natural map

Defr(R[e]) ®r R’ — Defpg,re (R'[e])
is an isomorphism.
Proof. Passing to the limit of R/7™ we may prove the with R replaced by some
R/7x™,n > 1. If F is a x-deformation of a normalized formal A-module of height h,

we may argue as in the proof of Lemma [2.39] The general case follows from this
by faithfully flat descent, Lemma and the fact that ind-finite étale algebras lift

uniquely along nilpotents, cf. [Stal7, Tag 09ZL]. O
We set I
h(X):= —(0,X) € R[[X]].
x) = 20.x) € Blx]

From Lemma we can deduce the following statement.

Lemma 5.6. The map g — Fy(X,Y)® ﬁdX with Fy as in (Equation ) fits
into an exact sequence
0 — Hompz(G,G,) — w(G) = M(G)Y — Defg(Re]) @r w(G) — 0.
In particular, if G is w-divisible of height h, then
(1) M(G)Y is a finite free R-module of rank h depending only on G (and not
F),
(2) for a morphism R — R’ of m-complete w-torsion free R-modules the natural
map
M(G)Y ®r R — M(GorR')Y
18 an tsomorphism.

Proof. We already discussed exactness at Hompg(F, Ga), w(G). Surjectivity on the
right follows from Lemma 5.3/ and the fact that R[e] is 7-torsion free (which implies
that each formal A-module law over it is associated to some logarithm). It is clear
that
g Fy(X,Y)

is R-linear for the R-linear structure on Defr(R]e]). Let us prove that the kernel
of g — Fy is generated by the integral quasi-logarithms and the multiples of the
logarithm. Thus, assume that F, for a quasi-logarithm g is equivalent to Fy = F.
Then there exists some a(X) = X +e8(X) € R[e][[X]], B(X) € R[[X]], such that

a(Fy(X,Y)) = F(a(X), (Y)), a([a] r, (X)) = [a] p(a(X)).

A short calculation shows that
or oF

AgUXYIRECEY)) + BUF(X, V) = T2 Y)B00) + (0, 1) 3()
and
3a9(X) - hllal (X)) + Allalr (X)) = Z0E () - ().

Rewrite now both equations in terms of 3(X) = h(X)v(X) with v(X) € R[[X]]
(this is possible as h(X) € R[[X]]*). By (Equation (1))
oF OF

h(F(X,Y)) = 55 (X, Y)W(X), ME(X,Y)) = 55 (X, Y)h(Y)
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and similarlyﬂ

which yields that
Ag(X, Y)h(F(X,Y)+h(F(X,Y))y(F(X,Y)) = h(F(X,Y))y(X)+h(F(X,Y))y(Y)
and
Jag(X)h(la]r (X)) + h([alp(X))y([a] (X)) = ah([a] p(X))y(X)
Thus,
Ag(X, Y) = A’V(X’ Y)v 6ag(X) = 5a7(X)7 acA,
as h(X) € R[[X]]*. We can conclude that
9(X) =7(X) +rlogp(X)
for some r € R (as ¢’(0) € R). Similarly, the final assertions follow from Lemma 5.5
and the 5-lemma. O

In order to analyze M (—)V further we develop a suitable normal form for formal
A-module laws over w-torsion free A-algebras.

HThis follows by taking the derivative of f([a]p(X)) = af(X) using f/(X) = %X)
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5.3. A-typical formal A-modules. Let A be as before a complete discrete valu-
ation ring with finite residue field k of characteristic p and cardinality q. We fix a
uniformizer 7 € A. Let K be the fraction field of A. Let R be an A-algebra and let
F € R[[X,Y]] be a formal A-module law. If R is m-torsion free we need a suitable
normal form for F' in the following.

Definition 5.7. Assume that R is w-torsion free. We call F an A-typical formal
A-module if

logp(X) = b;X7.
i=0
for some by, b1,... € Rx := R®a K.
In particular, we can deduce that
[(Jr(X)=¢-X

for each ¢ — 1-th root of unity in A, and that

oo

[mp(X) = rX?

i=0
for some rg,71,... € R.

Lemma 5.8. Assume that R is w-torsion free, and that F € R[[X,Y]] is an A-
typical formal A-module law. Then there exist by = 1,b1,...R,vg = m,v1,... € R
such that

logp(X) = 0:;X7,
=0

[7]r(X) = viX"imod(vO7 covim1) H (X Y)qu, 1> 0,

and
—1

2 k
by, = bovy, + blvg_l + bz’l)g_z oot bkflv(ll

for k> 1. In particular, ™ - b; € R fori > 1.

This proves that our definition of being A-typical agrees with the one used in
[HG9].

Proof. We already know that
logp(X) = boX + b1 X7+ b X7 + ...

for some by = 1,b1,bs,... € R. Writing F' as the image of the universal formal
A-module we find vg = m,v1,... € R such that

[7]r(X) = 2: X9 mod (v, V1, .., vi—1) + (X, Y)qi"’l.

Assume that i

2 k
7 - b = bovyg + blvg_l -+ bg’l)g_2 R bkfl’U(II
for some k > 0. We know that
mlogp(X) = logp([7]F(X)).
Write

[r]F(X) = Z w; X9
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Then we can conclude
T bpg1 = bowpg1 + brwi + ... + bkwfki1 mod (7).
Using that w; lies in the ideal (vg,v1,...,v) of R it is clear that we can redefine
Uk+1, such that
T b1 = bovgt1 + bivl + ...+ bkvfk
and
7] p(X) = ven X7 = wer X7 mod (vo, v1, ..., ve) + (X, Y)4 L
By induction we can prove the final statement that 7‘b; € R. This finishes the
proof. ([

We will use the following fact.

Lemma 5.9. Fach formal A-module over R is isomorphic to an A-typical one.
Moreover, we may assume that the isomorphism reduces to the identity on some
quotient R/I of R, if the base change to R/I is already A-typical for some ideal
I CR.

Proof. Cf. [HG94) Section 5] resp. [Haz78, 21.5.6]. O

Remark 5.10. Set R = Afvy,vg,...] and define f(X) € Rg[[X]] as the unique
power series satisfying

FX) = X+ 27 (x),
i=1

where fqi denotes the power series with v; replaced by v?i for 7 > 1. Equivalently,

FX) = bixe
=0

with bo = l,bl,... € R, and
-1

b. =D biv? b a b q*
Ok o0Vk + 01V, _1 + 020, _o ...+ 0k—17;

for k > 1. Then f is the logarithm of a formal A-module F over Afvy,va, .. .], called
the universal formal A-module (law). This is a particular case of Hazewinkel’s
integrality lemma in this case, cf. [Haz78, Section 2], [HG94, Proposition 5.7.].

Remark 5.11. Let h > 1 and with the notation from Remark consider the
A-algebra homomorphism

R— A

sending v; to 0 if j # h and vj, to 1. The image g(X) € A[[X]] of f(X) € R[[X]]
under this homomorphism satisfies

9(X) = X + _g(x7"),

i.e.
th, Xq2h,
+

2

+ ...
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We claim that]
g H(rg(X)) = X" mod T,
or equivalently
mg(X) = g(X*" + (X))
for some v(X) € A[[X]]. We prove the last statement via approximation modulo
powers of X. Thus assume that 7, (X) € A[[X]] is found such that

mg(X) = g(X*" +77,(X)) mod (X)"
(clearly this can be done for n = 1). Set
Ynt1(X) = M (X) + an X"
Then
9(XT 4 11 (X)) = 9(XT 4717, (X)) + ma, X7 mod (X)"+
as ¢’(0) = 1, and we want that this agrees with
1g(X) = 71X + g(X1")
modulo (X)"*!. Hence it suffices to see that g(th + 7y (X)) — g(th) has coef-
ficients in wA. Let 4 > 0. Then
(X7 4+ 77 (X)) = X7 77415, (X)
for some 6(X) € A[[X]] by the binomial formula. This implies that

1 h (3 1 i
— (X () - X =6, (X)

as desired.

We can conclude that one of the formal A-modules F}, of height h, whose ex-
istence we proved in Lemma [2.4] via the Lubin-Tate lemma Lemma can be
chosen to have logarithm g(X), i.e.,

Fp(X,Y) =g~ (9(X) + 9(Y)), lalp, (X) = 97" (ag(X)), a € 4,
because we proved that with this definition Fj, [a]p,,a € A, have coefficients in A
and
g Hrg(X)) = X" mod .
In [HG94], Section 13] this formal A-module is also called the canonical lifting.

In the A-typical case we can derive an easier description of the module of quasi-
logarithms M (G)V.

Lemma 5.12 ([HG94| Proposition 8.12]). Let R be w-torsion free, and F' € R[[X,Y]]
an A-typical w-divisible formal A-module law. Then each class in

M(Gr)"
can be represented by a quasi-logarithm which has the form g(X) = io: mini with
- m; € R for each i > 0. =
Proof. This follows from Lemma and Lemma by Lemma [5.§ (]

12We think that the argument for this in [Haz78) (8.3.4.)] is wrong as the calculation is made
mod 7, but the f(X) in loc. cit. has coefficients in K.
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We now explain why M (G)Y only depends on the reduction of G resp. F' to R/.

The following lemma is crucial for everything that follows.

Lemma 5.13. Let g(X) € Rg[[X]] be a quasi-logarithm for F, fi, f2 € R[[X,Y]]
power series with no constant term with fi1 = fo mod w. Then

9(f2(X,Y)) = g(f1(X,Y))
has coefficients in R.
Proof. By Lemma we may assume that F' is A-typical. Write
fH(X,Y) = f1(X,Y) + h(X,Y)
with h € R[[X,Y]] having coefficients in 7 - R, and

oo
g(X) = Zminl,
=0

cf. Lemma Then (supressing the variables X,Y)

g(f2) —g(f1)
=g(f1 +h) —g(f1)

=S mi(fi 4+ 0T — )
1=0

S ¢ :
_ ) Jpa =3
22 (a)h b

j=1

Now the claim follows from the fact that 7¥m; € R and

)
(“)o erin
J

forall 1 < j < g¢'—1, cf. Lemma |5.8]' [

Proposition 5.14. Let Fy, Fy € R[[X,Y]] two formal A-modules laws with G; :=
Gr,,i=1,2. Let fi1, fo € R[[X]] such that

[i(FL(X,Y)) = Fa(f;(X), f3(Y)) mod m,
filla]r, (X)) = lalr, (£5(X)) mod =,
and
f1 = fo mod 7.
Then g(X) — (g(f;(X)),7 = 1,2, induce the same, well-defined R-linear map
M(G2)" — M(G1)"
This proposition can interpreted as the statement that the functor M(—)Y is

“crystalline”.

1375 see this last statement apply the following observation to R = A[X]7 a=1+m-X, b=1:
Let R be some A-algebra and a,b € R such that a = b mod 7. Then a? =b?" mod mitl,
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Proof. Let g(X) € Ri[[X]] be a quasi-logarithm for F,. We first show that

9(f1(X))

is a quasi-logarithm for F;. Lemma applied to f1(F1(X,Y)), Fa(f1(X), f1(Y))
shows that

g(fi(F1(X,Y)) — g(F2(f1(X), f1(Y))
has coefficients in R, and similarly for the formal multiplication. This implies that
g+ g(f1(X)) defines a well-defined map
Ji M(G2)" — M(G1)".
Lemma applied to fi, fo shows then that f; = fF on M(G,)V. a
Let Gy be a m-divisible formal A-module over R/7. In particular, we can deduce
that
Go = M(G)"
is functorial for morphisms between formal A-modules over R/m, and that
Go = M(Go)" = M(G)"
with G any lift of Gy to R, defines a well-defined functor. We set
M(go) = HOIHR(M(Q())V, R)
If G is any lift of Gy, then by Lemma [5.6] we have a natural surjection
M(Go) — Lie(G).
Morever, M(Gp) is of rank equal to the height of the m-divisible formal A-module
Go-
In particular, the construction of the Gross-Hopkins period morphism
mau: M3 = P(M(Gy) @4 K)™

is finished, cf. Section [5.1}

Let us note that there a priori exist two A-module structures on M (Gp): one
via the A-action on Gy and the other via the natural R-module structure on quasi-
isomorphisms and the homomorphism A — R. As ag(X) — g([a]7(X)) has coeffi-
cients in R for any quasi-logarithm g, we see that both A-actions coincide.

5.4. men is étale and surjective. Fix A, Fj,, 7, K, M etc. as in Section [5.1] We
want to show that the Gross-Hopkins period morphism

men: M2 = P(M(Gr) @4 K)™

is étale and surjective.

We first prove that it is étale in the sense that mgy induces an isomorphism on
tangent spaces. Let us recall how to describe the tangent space of projective space.
Let S be any ring and let M be a finite, projective S-module. The projective space
P(M) associated with M represents the functor

Algg — (Sets)

sending an S-algebra T to the isomorphism class of pairs (L, ) with L an invertible
T-module and v: M ®s T — L a surjection. Given any section z € P(M)(T)
represented by the surjection ¢: M — L the tangent space at z

T.(P(M)) :=P(M)(Te]) xpan 1) {2}
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identifies canonically with
Homp(M, L)/(T - ¢)
by sending ¢: M — L to the surjection
po+e-1: Me] — L[e].

We can similarly describe the tangent space of a section of an adic projective
space. Given a complete sheafy Huber pair (B,B7") over (K, A), and a section
T € /\/l;a,d (B, BT) represented by a pair

(G,a) € M(By)
for some ring of definition By C BT C B, then the tangent space
d
Ty M3
identifies with
Defg(Bole]) @, B.
The étaleness of wqy is then implied by the following statement.
Lemma 5.15. For any z, By, G, ... as above the map B-linear map
T M2 — T P(M(Gr) @4 K)™
is an tsomorphism.
Proof. The Gross-Hopkins period morphims is induced by the natural surjection
p: M = M(gh) ®q B = M(g) X By B — L:= Lle(g) X By B
dual to the inclusion w(G) — M(G)" By Lemma [5.6) we get
Hom(M,L)/By = M"Y ®@p L/By = Defg(Byle]) ®5, B,

which is Tz/\/lf;d. Unravelling the definitions of these identifications shows that Tgg
induces the identity on tangent spaces. (I

To show surjectivity of mgy we will make mgy more explicit. Recall that

M= H MRZ,n
nez
is a disjoint union and that
Mo = Mgz, o = Mp, =2 Spf(A[[X1,..., Xn-1]]),

where Mp, is the Lubin-Tate space defined in Section
Let R be a m-complete, m-torsion free A-algebra and set R := R®4 K. Assume
that (G, ) € M(R), i.e., G is a formal A-module over R and
a: GOrR/m --» GLOrR/T
is a quasi-isogeny. Fix some n > 0 such that [7]¢ o al=a"lo [7]g, is an isogeny
[7]G o a ' G orR/m — GORR/T.

We may write G = G associated to some formal A-module law F' € R[[X,Y]], and
then lift [7]§ o ™! to some power series

f[pi}goafl(X) € RHX]]
The pullback g(X) — g(f[ﬂ]goa—l (X)) defines the morphism
M([r]goa ")V M(G)Y = M(GorR/7)" — M(Gr)" ®4 R
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and then M(a™")Y = LM ([r]% o a™!)V. Assume now that
€0 C1y-- s Cho1: M(Gp)Y — A
form a basis of M(Gy,) = Homa (M (G)V, A). Let R} be the integral closure of R
in Rk, and assume that Ry is sheafy. Then
M(R) - M:d(RKa R})
and

(T Ch—1)

men(G, @) € P(M(Gn) @4 K)*'(Rg, RY) = Py *(Ri, RY)
is given by the point
[co(M () t(logp)) : er(M(a) *logg) : ... cno1(M(a) t(logp)]

because R - logr(X) C M(G)Y is the image of the canonical morphism w(G) C
M (G)V. As a side remark we can see here very concretely that the image of (G, o)
does not depend on the formal A-module law F' because for different choices of F’
the logarithm log,(X) changes by a multiple.

Assume now that (G, a) € My(R) C M(R). By Proposition we may then
find a x-deformation F' € R[[X,Y]] of F}, such that G = Gr and « corresponds to
identity modulo some ideal I C R with 7 € I and I/(7) C R/w nilpotent. The

same holds then for a=! and because [r]g, (X) = X" we may take

nh

f[Tr]SOa*l (X) = X1

for some n > 0 (the power series X7" is the n-fold composition of th). Con-
cretely, if 19" C (m), then X" defines a morphism F — F}, over R/(m). By
arguments as in Lemma we may then find n. The map

M(a™"Y: M(G)Y ®r Rk = M(Gr)Y ®a Ri
sends a quasi-logarithm g(X) for F to

1 nh
79(Xq )-
™

More canonically, we can write this as

1 nh
g(X) = lim —g(X7 )€ M(Gn)Y ®a Ri

n—oo TN
and the limit is eventually constant.
Now we have to calculate M (G)Y and construct a suitable basis

C0,C1s- -5 Ch1 € M(Gp).
For this we calculate the quasi-logarithms in the universal A-typical case. Let
FA—typ € A[’Ul, V2, .. ]

be the universal A-typical formal A-module constructed in Remark [5.10] i.e., the
logarithm fa_typ € X - K[v1,v9,...][[X]] of Fa_typ satisfies the functional equation

> Vi gt i
fa—eyp(X) =X + Z ;fg—typ(Xq )-
i=1
For each ¢ > 1 consider the base change F; of Fo_yp, along the map

Alvy,ve,...] = Alvr,ve, .. ][€],
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which maps v; to v; if 7 # j and v; to v; + €. We can write the logarithm of F; in
the form

fa—eyp(X) +eg9i(X)
with g;(X) a quasi-logarithm for Fa_ty, by Lemma Concretely,
_9f
ov;
Let Furn € A[[X,Y]] be the Lubin-Tate formal A-module whose logarithm is

gi(X)

(X) € Klvy,ve,...][[X]].

th Xq2h

fo(X) =X+ + =

+...,
m

cf. Remark This is the specialization of the universal A-typical formal A-
module along the map

A[’Ul, . ] — A
sending v; to 0 if j # h and vy, to 1 because fo(X) is the unique solution of the
functional equation

fo(X) =X+ %fo(th)

with vanishing constant term. For ¢ > 1 the above quasi-logarithm g;(X) specializes
and yields the quasi-logarithm

FiX) = T fo(X9), =1,k

for Fi . Indeed, this follows easily from the functional equation for fa_y, and the
fact that g;(X) is the v;-derivative of fao_¢yp. By Lemma and the construction
of the g; we can deduce that

M(Gr)Y = (fo, f1s---s fn1)a,

or more precisely that the classes of fo, f1,..., fn_1 form a basis of M(G,)Y. Note
that the map g(X) — g(X?) defines an endomorphism ¢y;(g,)v of M(Gn)" by
Proposition (as X7 lifts the Frobenius on Gp,). Let Ap be the ring of integers
in the unramified extension K} of K of degree h and let kj be the residue field of
A. Then Ay, acts on FLT,h®kkh. Concretely, if ¢ € A,, is a ¢" — 1-th root of unity,
then ( acts via the power series (X. Namely, it follows directly from the functional
equation

folX) = X+~ fo(X"")

for the logarithm fo(X) of Fyrp that fo((X) = (fo(X). Let o: Ay, — Ay the
lift of the ¢g-Frobenius. Then Aj acts on f; € M(Gp,) ®4 Ay, via the morphism .
Indeed, it suffices to check this for a ¢ — 1-th root of unity ¢ € Ay, where it follows
from the fact that o(¢) = (? and the definition of f;.

Let co,...,cn_1 € M(Gp) ®4 K be the dual basis of fo,..., fh_1 € M(Gp)V.
From the definition of the f; we see that

co(g(X)) = le "My, € K
and

ci(9(X)) = lim 7"y, € K

n—oo
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o0 .
fori =1,<,h—1,if g(X) = 3 m; X7 is a quasi-logarithm for Fir , cf. Lemmal5.12
i=0
In particular, the limit above exists for ¢ = 0,...,h — 1 and only depends on the
class of g(X) in M(Gp)V.
Let us come back to the pair (G, a) € Mo(R) represented by the x-deformation
F of Fj,. We may assume that F' is A-typical by Lemma Let

9(X) = Z m; X7
=0

be a quasi-logarithm for F'. We can conclude that
M(a™")(g(X))

1 n
= lim —g(th )

n—oo TN

1 o
hn+1i
= E min
ﬂ—’ﬂ
=0

for n > 0 and thus
co(M(a™")(g(X)))
1 .
p— 1 —_— ] .
jlgl(’)lo ﬂ-nﬂ— Mp(j—n)

= lim 7/my;
J—00

and
cr(M(am ) (g(X)))
. 1
= fim T G

— T J+1 .
= fum, 7

for k =1,...,h — 1. Appyling this to g(X) = logp(X) yields the homogeneous
coordinates of Tqu (G, ). For example, the canonical lifting G, , is sent to the
point [1: 0 :...:0]. In general, we can be more concrete. Namely, consider the
formal A-module

F, € Al[ug,...,up—1]][[X, Y]],
which is the specialization of Fa_¢yp € Afv1,v2,...][[X, Y]] along the morphism
A[Ul, V2, .. ] — A[[ul, R 7uh,1]]

sending v; — u; fori =1,...,h—1, vy — 1, and v; + 0 for ¢ > h. By Theorem [2.34]
the resulting morphism

Spf(A[[u1, ..., up—1]]) = Mo

is an isomorphism. The logarithm of Fa_¢y, has the form

faiyp(X) = Z bini
i=0

with bg = 1, and bg, k > 1, defined via the recursive formula

-1

_ q q*
by = bovg + blvk—l + ...+ bk_l’l)l
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Let

u}ll “Z—l ad
D:= Spa(K(ﬁ,L_1 e (D) )) € Spf(Af[ug, ..., un—1]])5",

i.e., D is the “polydisc” parametrizing (automatically topologically nilpotent) ele-
ments uq,...,up_1 in a (complete, sheafy) Huber pair (B, B™) over (K, A) such
that |u;(z))|" < |7 (x)|"~* for all 2 € Spa(B,B*) and i =1,...,h — 1.

For P%_l’ad we take the homogeneous coordinates ¢y, c1,...,ch_1, i.e., generating
sections of O(1). Let

(&
w; ‘= —,
Co
which are coordinates of A?(_l’ad C P'}{l’ad. Set
h h
;o w1y Wy 1 h—1,ad
D := Spa(K(Wh_l,...,ﬂ_h_(h_l)>) C Py .

Proposition 5.16. The Gross-Hopkins period morphism restricts to an isomor-
phism
men: D — D).

Proof. Set

h h
Uy Up—1

Ri= Alhs. o o) 2 AT Th)

with T} := ul /7"~ i =1,...,h — 1, and let F € R[[X,Y]] be the base change of
the A-typical formal A-module F, over A[[u1,...,un_1]] with its logarithm

logp(X) = Z b X7
=0

Set
co:= lim 7"bp, € Rg = R®a K
n—oo
and
¢ = lim 7T"+1bhn+i €ERxk =R®a K
n—oo
fori = 1,...,h — 1. Define up := 1. We know by construction of the universal

A-typical formal A-module Fa_typ that
(14) by = Z ;07 (D),
0<j<h
with
c:R— R
the A-algebra homomorphism induced by o(u;) = u] fori =1,...,h—1,and b, =0
for n < 0. We let
|=l=1=Ip
be the maximum norm on Ry, cf. Lemma In particular,
|uil* = |m|"
fori=1,...,h. Let
v: Rg — QU {o0}
be the associated additive valuation, which we assume to be normalized such that
v(m) = 1. This implies




138 JOHANNES ANSCHUTZ

fori=1,...,h. We claim that

h—i
(15) (5" ) = T
fori=1,...,h, and n > 0. In the case i = 1,n = 0 we have
h—-1
v(rh) =v(uy) = -

as by = %X by (Equation ) Thus assume that the statement is proven for every
number hm + j < hn + i with j = 1,...,h. Then we know that 7 by,,1; € R
and

(T bpms) = (7™ by j)? mod 7R.
From the strong triangle inequality we can deduce
v(o(7"  bpng)) = qu(n™ o)

From (Equation (14)) we get

7" i = Z uj7T"Jj(bhn+i,j).
0—j<h
We claim that for i =1,...,h
V(7" i) = v(wim" ot (bpy)),
which using induction (or that by = 1 if n = 0) equals
h—i h  h—i

TR T T
To prove this last claim it suffices to see that
. h—i
v(u;m" o7 (bpnti—j) — >0
If i < j, then
n_j h—i _h—j  h—(h—j+i) (¢ -1(-1)
v(um"o? (bnntij)) = —3— = —= +d’ ; = - > 0.
If i > j, then
4 h—i h—j . h—i+j h—i (¢ —1)(h—(i—j))
v(u;m"o? (bpnti—j))— P +¢’ . —1- = -
This finishes the proof that
h—1
V(Wn+1bhn+i) — ;
for i =1,...,h. In particular, we can deduce that
h—1 1
v(co) =0,v(c1) = T,...,V(Ch_l) =7

by passing to the limit over n. In particular, mgy maps D to I)’. If we write
D' = Spa(K (w1, ..., wp_1))
with indeterminants wy, ..., wp_1, then gy is induced by the morphism

ar Alwh /ah=Y L wh Jn) = R AT, Thet), w; s =
co
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fori=1,...,h— 1. We saw above that
h—i
n
which together with v(o7 (bp,) — 1) > 0 (as was proven implicitly above) implies
that

V(7" opngs — wi? (bpy)) >

h—1i
v(o(w;) —u;) > T
This in turn proves that « is an isomorphism. Indeed, as
A<wil/7rh717 e 7w}};—1/ﬂ-1>a R

are m-complete and 7-torsion free it suffices to prove this modulo w, where it follows
from the fact that a(w!/7"~%) = ul /7"~ for i = 1,...,h — 1. This finishes the
proof. O

In [Farl0, Corollaire 11] Fargues reinterprets the domain D as the locus in M2d
parametrizing the locus where the m-torsion in G is semistable (in the sense de-
veloped in [Farl0]). We can now finish the proof the the main theorem of this
course.

Theorem 5.17 ([HG94] Section 23]). The Gross-Hopkins period map
Ten: M3 — P(M(Gy) @4 K)* = P12
is €tale and surjective. The same holds for its restriction to M%fio.

Proof. Etaleness was proven in Lemma Let
I: Gn — Gn
be the Frobenius isogeny. For surjectivity of mgy it suffices to show that

]P);L(fl,ad C U - n'
ne”Z

for D' as in Proposition Let C/K be any non-archimedean field extension and
let
v: C = RU{oc0}
be its additive valuation, normalized such that v(7) = 1. For
[co:er i ienq] € P}I?l’ad
any field valued point we have
O-fco:cr:o..iepa]=[ntericar . ien1:cl € IP’};{_l’ad.

Choose i = 0,1,...,h — 1 such that

)
Z/(Ci) + E
is minimal. Then
I fecg:icr:o.iopa]=[m eiicigr: o ienrico:m ter s im tep ]
lies in D'. Indeed, we know that
] )
viey) + 3 > vie) +
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for 7=0,...,h—1. If j > 4, we can conclude

il
v(cj) —v(n~ler) > 1+ % B % = %
If i < j, we can conclude
v(rlej) —v(nle) > % - % - Z;]

as desired. We are left with the statement that the restriction
TGH: M:flo — ]P’};(_l’ad

is surjective, too. For this it suffices by the above argument to show that if R is
the ring of integers in a sufficiently large finite extension of K and

(G,a) € Mo(R),
then there exists a point (G, ) € My(R) such that
nau(G, 1171 - a) = mqu(G’, o).
By [HG94, (23.19)] resp. [Lub67] there exists (for R sufficiently large) an isogeny
f:G6—-¢
reducing to the Frobenius isogeny, with G’ = G a *-deformation of F}. Let o/ the
unique quasi-isogeny such that we arrive at the commutative diagram

M(Gn)x 2 M(G) i —29 Lie(@) i

TN

M((a) Ygr .
MGk 2 M (G k%> Lie(G)x.
where the subscripts denote base extension, and all vertical morphisms are isomor-
phisms. The composition
g o M(a™") o M(IL)
defines the point mgr (G, 17 1a) while the composition

g o M((a')™1)
defines the point mgu(G’, ). From the above commutative diagram we can con-
clude that both points define the same point in P(M(Gp,) x)29. O

Via further calculations Gross and Hopkins prove in [HG94, Section 23] further-
more that via the action of the quasi-isogenies of G, each point on M ?Id can be trans-
lated to lie in D, cf. [HG94, Corollary 23.26], and they describe the fibers of mgp, cf.
[HG94, Proposition 23.28]. Namely, given any algebraically closed non-archimedean
field extension C'/K and a point z € IP”}{l’ad (C) there is a non-canonical isomor-
phism

Ten (%) & GLy(K)/GLy(A).
More precisely, by the argument in the end of Theorem [5.17] one can see that
quasi-isogenious formal A-modules over O map to the same point under the Gross-
Hopkins period morphism. Given any formal A-module G over O¢ the isomorphism

classes of formal A-modules over O¢, which are quasi-isogenious to G are in bijection
with GL,(K)/GLp(A), cf. [Lub67].
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