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1. Local class field theory via Lubin-Tate theory

In the first part of the course we want to discuss local class field theory via
Lubin-Tate theory following [LT65], [Gol81] and [Ser13].

1.1. The global and local Kronecker-Weber theorem. For N ≥ 1 we set

µN := {z ∈ C | zN = 1} = {e2πik/N ∈ C | k ∈ {0, . . . , N − 1}} ∼= Z/N
as the subgroup group in C× of N -roots of unity. Clearly, each element of µN
is algebraic over Q, and therefore lies in the algebraic closure Q of Q in C. The
subfield

Q(µN ) ⊆ Q
generated by the elements of µN is called the N -th cyclotomic field, and it is the
prototypical example of a Galois extension of Q with an abelian Galois group.
Indeed, there exists a chain of canonical isomorphism

Gal(Q(µN )/Q) ∼= Aut(µN ) ∼= (Z/N)×.

Let us mention the following famous theorem of Kronecker-Weber.

Theorem 1.1 (Kronecker-Weber). Let L/Q be a finite abelian extension, i.e., a
finite Galois extension with abelian Galois group. Then there exists an N ≥ 1 and
an embedding L ⊆ Q(µN ).

In other words,

Q(µ∞) :=
⋃
N

Q(µN )

is the maximal abelian extension of Q. Theorem 1.1 is a massive generalization of
the fact that each quadratic extension of Q is contained in a cyclotomic field. For
example, if p ∈ Z≥0 is an odd prime and p∗ = (−1)(p−1)/2p, then Q(

√
p∗) ⊆ Q(ζp)

as Q(ζp) contains a unique quadratic field by Galois theory and this field can only
be ramified at p.

Now fix a prime p and consider the p-adic field Qp, which is defined as the
completion of Q for the p-adic norm

| − |p : Q→ R≥0, x 7→ p−νp(x),

where

(1) νp(x) :=

{
∞, x = 0

a, if x = pamn , m, n ∈ Z \ {0}, p - mn,

is the p-adic valuation.
The theorem of Kronecker-Weber admits the following “local” analog over Qp.

Theorem 1.2 (local Kronecker-Weber). Let L/Qp be a finite abelian extension.
Then there exists an N ≥ 1 and an embedding L ⊆ Qp(µN ). In other words,

Qp(µ∞)

is the maximal abelian extension of Qp.

Here, Qp(µN ) denotes the composite of Qp and Q(µN ) inside an algebraic closure
of Qp, and similarly for Qp(µ∞).

Actually, the conjunction of the local Kronecker-Weber theorem for all primes p
implies the Kronecker-Weber theorem for Q, cf. [Sut17, Lecture # 20].
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It is one aim of the course to generalize Theorem 1.2 to arbitrary finite extensions
of Qp (or finite extensions of Fp((t))), i.e., to describe the maximal abelian extension
Kab for any non-archimedean local field. We want to explain in the following how
this description looks like, but first we will provide a reminder on (non-archimedean)
local fields.

1.2. Reminder on (non-archimedean) local fields. The p-adic valuation

νp : Q→ Z ∪ {∞}

introduced in (Equation (1)) has the following properties:

(1) νp(x) =∞ if and only if x = 0.
(2) νp(xy) = νp(x) + νp(y) for x, y ∈ Q.1

(3) νp(x+ y) ≥ min{νp(x), νp(y)} for x, y ∈ Q (the “triangle inequality”).

A field K equipped with a function ν : K → Z∪ {∞} satisfying these properties
for Q replaced by K is called a discretely valued field. Examples are Q with the p-
adic valuation νp, Qp with the canonical extension of νp (which we will still denote
νp) or Fp((t)) with the t-adic valuation

νt : Fp((t))→ Z ∪ {∞},
∞∑

i�−∞
ait

i 7→ inf{i| ai 6= 0}.

Let (K, ν) be a discretely valued field. Then

OK := {x ∈ K | ν(x) ≥ 0}

is a subring of K (called “its ring of integers”), which satisfies the following prop-
erties:

(1) OK is local with maximal ideal mK := {x ∈ K | ν(x) > 0}, in particular

O×K = OK \mK = {x ∈ K | ν(x) = 0},

where the LHS denotes the units in OK ,
(2) mK is generated over OK by each element π ∈ K with ν(x) = 1 (such a π

is called a “uniformizer”).
(3) The non-zero ideals of OK are indexed by N via

n 7→ (πn).

(4) The ring OK is normal, i.e., integrally closed in K.

In other words, OK is a discrete valuation ring, i.e., a local noetherian ring which
is regular of Krull dimension 1. We see that for each uniformizer π ∈ K the map

Z×OK → K×, (n, u) 7→ πnu

is an isomorphism.

Exercise 1.3. Deduce all the above statements from the properties of ν.

The triangle inequality for ν has the following, maybe surprising, corollary.

Lemma 1.4 (“strong triangle inequality”). If x, y ∈ K and ν(x) 6= ν(y), then

ν(x+ y) = min{ν(x), ν(y)}.

1Here we set ∞+ n =∞ for all n ∈ Z.
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Proof. We may assume ν(x) < ν(y). Then

ν(x) ≥ min{ν(x+ y), ν(y)},
and ν(x) < ν(y) together with the triangle inequality imply ν(x) ≥ ν(x+y) ≥ ν(x)
and thus ν(x) = ν(x+ y) as desired. �

Let a > 1 be any real number, then the map

d : K ×K → R, (x, y) 7→ a−ν(x−y)

defines a metric on K and we say that K is complete if the metric space (K, d) is
complete, i.e., Cauchy sequences in (K, d) converge to a unique limit. Each metric

space admits a completion (K̂, d̂), and in the case of (K, d) one can check that K̂
is again naturally a field. The valuation ν on K extends uniquely to a valuation ν̂
on K̂, and this makes (K̂, ν̂) into a discretely valued field (called the “completion”
of (K, ν)). For example, Qp was defined as the completion of (Q, νp) while the field
Fp((t)) of Laurent series with coefficients in Fp is already complete for its t-adic
valuation. A different construction of the completion is the following: Take any
element x ∈ mK \ {0} and define

ÔK := lim←−
n≥1

OK/(x)n

(the “(x)-adic completion” of OK). One checks that ÔK is an integral domain, and
that

K̂ ∼= Frac(ÔK) ∼= ÔK [
1

x
].

The essential point is that the subspace topology of OK for the metric topology on
K agrees with the (x)-adic topology of OK .

The following statement is an important property of complete discretely valued
fields. It fails without assuming completeness.

Proposition 1.5. Let (K, ν) be a complete discretely valued field, and L/K a
finite extension of degree n. Then ν admits a unique extension to a valuation
ν′ : L→ 1

nZ ∪ {∞}. For each x ∈ L we have

ν′(x) =
1

n
ν(NL/K(x)),

where NL/K : L→ K is the norm, and L is complete.

The proof can be found in [Tia, Theorem 8.5.1.]. The critical point is to show
that the function

ν′(−) =
1

n
ν(NL/K(−)) : L→ 1

n
Z ∪ {∞}

satisfies the triangle inequality.
This in turn uses Hensel’s lemma, which we recall here for later use.

Lemma 1.6 (Hensel’s lemma). Let K be a complete discretely valued field with
residue field k, g(X) ∈ OK [X] a monic polynomial with reduction g(X) ∈ k[X].
Assume that g = h1 · h2 for h1, h2 ∈ k[X] such that (h1, h2) = 1. Then there exists
a factorization

g = h1 · h2 ∈ OK [X]

with deg(hi) = deg(hi), i = 1, 2, and hi ≡ hi mod mK . Moreover, h1, h2 are unique
with these properties up to multiplication by a unit in OK .
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A sample application of Hensel’s lemma is that for a prime p the field Qp contains
the p− 1-th roots of unity as the polynomial Xp−1 − 1 ∈ Zp[X] reduces to

Xp−1 − 1 =
∏
α∈F×p

(X − α) ∈ Fp[X].

Proof. The proof can be found in [Tia, Proposition 8.4.1.] (or more generally in
[Sta17, Tag 0ALJ] for any ring R which is I-adically complete for an ideal I ⊆ R).
We only sketch the proof of the special (actually, equivalent, cf. [Sta17, Tag 03QH])
case that

h1 = X − β
for some β ∈ k. We then have to show the existence of some α ∈ OK lifting β,
which is a zero of g. The assumption (h1, h2) = 1 is equivalent to g′(β) 6= 0. Let
α0 ∈ OK be any lift of β. The idea of proof is to show that the Newton algorithm

αn+1 := αn −
g(αn)

g′(αn)
, n ≥ 0,

for finding zeros of polynomials yields a Cauchy sequence {αn}n≥0 in K whose
limit α (which exists by completeness of K!) fulfils the requirements. We leave the
details as an exercise. �

The ring of integers OL agrees with the integral closure of OK in L (this appears
in the proof of Proposition 1.5). We record the following statement, which again
needs completeness.

Lemma 1.7. Let L/K be a finite extension of complete discretely valued fields of
degree n. Then the ring OL is a finite free OK-module of rank n.

Proof. Cf. [Tia, Lemma 9.1.1.]. �

Let us now give the definition of a (non-archimedean) local field.

Definition 1.8. A (non-archimedean) local field is a finite extension of Qp or
Fp((t)) for some prime p.

Equivalently, a (non-archimedean) local field is the field of fractions of a complete
discrete valuation ring A with finite residue field k = A/mA. For a local field K we
denote by

νK : K � Z ∪ {∞}
its (normalized) valuation. By definition, finite extensions of local fields are again
local fields.

We now recall some terminology concerning finite extensions of local fields.

Definition 1.9. Let L/K be a finite extension of local fields of degree n, let OK ⊆
OL be their rings of integers, and let πK ∈ OK , πL ∈ OL be uniformizers.

• We call the ramification index of L/K the unique natural number e :=
e(L/K) ≥ 1 such that πK · OL = (πL)e.
• We call the residue degree f := f(L/K) of L/K the degree of the (finite)

field extension k := OK/(πK)→ kL := OL/(πL).
• We call L/K unramified if f = n, and we call L/K totally ramified if e = n.
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Using Lemma 1.7 it is not difficult to see that n = e · f . An extension L/K of
degree n is totally ramified if and only if L ∼= K[X]/(g(X)) for some polynomial

g(X) ∈ OK [X],

which is Eisenstein, i.e., νK(g(0)) = 1 and g(X) ≡ Xn mod πK . In this case,
OL = OK [πL] for each uniformizer πL ∈ L. Indeed, we leave it as an exercise that
for an Eisenstein polynomial g(X) ∈ OK [X] the ring L = K[X]/(g(X)) is a field,
whose valuation subring OL is given by OK [X]/(g(X)). Conversely, assume L/K
is totally ramified of degree n and πL ∈ L a uniformizer. Let

ν′ : L→ 1

n
Z ∪ {∞}

be the unique extension of the normalized valuation ν = νK on K. Then

1 = νL(πL) = eL/Kν
′(πL) = nν′(πL) = ν(NL/K(πL)),

which implies that the constant coefficient of the minimal polynomial g(X) ∈
OK [X] of πL equals π up to a unit in OK . As L/K is totally ramified, all other
coefficients are divisible by π. The inclusion OK [πL] ⊆ OL must then be an equality
as the residue fields of both local rings agree and both contain πL. A reference for
these facts is [Tia, Section 9.1.].

The unramified extensions are classified by finite extensions of the residue field.

Proposition 1.10. Let K be a local field with residue field k = OK/mK . Then the
functor

{L finite, unramified extension of K} → {l finite extension of k}
L 7→ kL := OL/mL

is an equivalence of categories.

Proof. We provide a short sketch of proof, more details can be found in [Tia, Section
9.2.]. Each finite unramified extension L/K is separable, i.e., of the form

L ∼= K[X]/(g(X))

for some separable polynomial g(X) ∈ K[X], which we may assume to be monic
and lie in OK [X]. Argueing a bit more carefully, we can arrange that

kL ∼= k[X]/(g(X)),

where g(X) ∈ k[X] denotes the reduction of g(X). Note that g(X) is then irre-
ducible and thus automatically separable as k is a finite field. For any finite field
extension L′ of K we then have to see that the map

HomK(L,L′)

∼= HomK(K[X]/(g(X)), L′)

∼={α ∈ OL′ | g(α) = 0}
→{β ∈ kL′ | g(β) = 0}
∼=Homk(kL, kL′)

is bijective. But this follows from Hensel’s lemma Lemma 1.6 applied to L′. This
finishes the proof of fully faithfulness. Essential surjectivity then follows by lifting
the minimal polynomial of a generator of a finite (separable) extension l of k to a
monic polynomial g(X) ∈ OK [X] and setting L = K[X]/(g(X)). �
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Exercise 1.11. Let (K, ν) be a complete, discretely valued field, and let OK =
{x ∈ K | ν(x) ≥ 0} be its ring of integers, mK ⊆ OK the maximal ideal, and
k = OK/mK the residue field. Let π ∈ OK be a uniformizer.

(1) Let S ⊆ OK be a system of representatives for the residue classes in k, i.e.,
the map OK → k restricts to a bijection S ∼= k. Prove that∏

N
S → OK , (an)n 7→

∞∑
n=0

an · πn

is a well-defined homeomorphism, when the LHS is equipped with the prod-
uct topology.

(2) Assume that char(k) = p > 0 and that k is perfect. Then there exists a
unique multiplicative map

[−] : k → OK ,

such that λ ≡ [λ] mod (π) for all λ ∈ K.

Hint: Try [λ] = lim
n→∞

( ˜λ1/pnp
n

) with ˜λ1/pn a lift of λ1/pn .

(3) Assume that char K = p > 0 and that k is perfect. Prove that

K ∼= k((π)).

1.3. The maximal abelian extension of a local field. Fix a prime p. Let K
be a local field (with residual characteristic p) and fix a separable closure K of K.
In this section, we want to analyze the maximal abelian extension

Kab :=
⋃

L⊆K, L/K finite abelian

L ⊆ K

and see what Lubin-Tate theory can tell us about it.
Let k = OK/mK be the residue field of K. Recall that for each m ≥ 1 the

(finite) field k ∼= Fq has a unique extension km of degree m (up to isomorphism).
By Proposition 1.10 we obtain that for each m ≥ 1 the local field K has a unique
unramified extension

Knr
m

of degree m. From Proposition 1.10 we can conclude that

Gal(Knr
m /K) ∼= Gal(km/k) ∼= FrobZ/m

q ,

where

Frobq : km → km, x 7→ xq

is the q-Frobenius of km, which is known to generate Gal(km/k). Set

Knr :=
⋃
m≥1

Knr
m ⊆ K,

which is the maximal unramified extension of K.
We can explicitly describe Knr. Namely, let k be an algebraic closure of k. Then

k =
⋃

(N,p)=1

k(µN (k)),

where we set for any ring R

µN (R) := {y ∈ R | yN = 1}
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as the group of N -roots of unity in R. We can conclude that

Knr =
⋃

(N,p)=1

K(µN (K)).

Clearly, each Knr
m is abelian and thus

Knr ⊆ Kab.

On Galois groups we therefore obtain an exact sequence

0→ Gal(Kab/Knr)→ Gal(Kab/K)→ Gal(Knr/K)→ 0,

where

Gal(Knr/K) = lim←−
m≥1

Gal(Km/K) ∼= lim←−
m≥1

Z/m =: Ẑ.

Because Ẑ is a free profinite group it follows that we can pick a (non-canonical)
splitting

s : Gal(Knr/K)→ Gal(Kab/K).

Therefore we can write

Kab = Knr ·Ks

with Ks the fixed field of the (closed) subgroup s(Gal(Knr/K)) ⊆ Gal(Kab/K).
Note that Ks is necessarily totally ramified as K = Ks ∩ Knr. Before we try
to describe Ks, let us pause and analyze the case K = Qp assuming the local
Kronecker-Weber theorem Theorem 1.2. Then

Qab
p = Qp(µ∞),

while

Qnr
p =

⋃
(N,p)=1

Qp(µN ).

This suggest to look at the “missing part”

Qp(µp∞) =
⋃
n≥1

Qp(µpn)

as Qab
p = Qp(µp∞)Qnr

p (we leave it as an exercise to check that Qp(µp∞) = Ks for
a suitable section s).

In this case, there exists a canonical isomorphism

Gal(Qp(µp∞)/Qp) ∼= lim←−
n

Gal(Qp(µpn)/Qp) ∼= lim←−
n

(Z/pn)× ∼= Z×p .

In particular, there exists a non-canonical isomorphism

Gal(Qab
p /Qp) ∼= Ẑ× Z×p .

Local class field theory asserts that such an isomorphism exists for an arbitrary
local field K.

Theorem 1.12. Let K be a local field. Then the Galois group of Kab over K is
(non-canonically) isomorphic to

O×K × Ẑ,
where OK ⊆ K denotes the ring of integers. In fact, there exists a canonical mor-
phism K× → Gal(Kab/K), which identifies the target with the profinite completion
of K× ∼= Z×O×K .
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Let us elaborate a bit more on the canonical isomorphism

Gal(Qp(µp∞)/Qp) ∼= Z×p .

For this, let us fix some n ≥ 1 and consider the polynomial

Xpn − 1

and its factorization

Xpn − 1 = Φpn(X)Φpn−1(X) . . .Φp(X)Φ1(X)

into the cyclotomic polynomials (e.g., Φ1(X) = X−1, Φp(X) = Xp−1+. . .+X+1).
We get the decomposition

(2) Qp[X]/(Xpn − 1) ∼= Qp(µpn)×Qp(µpn−1)× . . .×Qp(µp)×Qp.

Clearly, given a ∈ Z the map

X 7→ Xa

induces a homomorphism

ϕa : Qp[X]/(Xpn − 1)→ Qp[X]/(Xpn − 1)

of Qp-algebras, which only depends on the residue class of a modulo pn.2 The
resulting map

ι : Z/pn → EndQp(Qp[X]/(Xpn − 1)), a 7→ ϕa

is a map of multiplicative monoids, i.e., ϕa·b = ϕa ◦ ϕb, and we get a natural
homomorphism of groups

ι : (Z/pn)× → AutQp(Qp[X]/(Xpn − 1)).

But each automorphism of Qp[X]/(Xpn − 1) has to respect the decomposition
(Equation (2)), and thus preserve each factor. In particular, we obtain the natural
morphism

(Z/pn)× → AutQp(Qp(µpn))

which yields the canonical isomorphism

Z×p ∼= Gal(Qp(µp∞)/Qp)

by passing to the inverse limit over n.
We will see that the above situation generalizes to an arbitrary local field K if

we do the twist of rewriting everything in terms of Y := X−1. The decomposition
(Equation (2)) then reads

Qp[Y ]/((1 + Y )p
n

− 1) ∼= Qp(µpn)× . . .×Qp
according to the factorization

(1 + Y )p
n

− 1 = pY +

(
p

2

)
Y 2 + . . .+ pY p

n−1 + Y p
n

= Φpn(1 + Y ) · · ·Φ0(1 + Y ).

For a ∈ Z the endomorphism ϕa becomes the morphism

Y 7→ (1 + Y )a − 1.

2Qp[X]/(Xpn − 1) is isomorphic to the group algebra Qp[µpn ] and ϕa is induced by the

multiplication by a on µpn .
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It is convenient to formulate the situation independently of n by passing to power
series. For this it is worth noting that the Z-action a 7→ ϕa is actually defined over
Zp as for each a ∈ Z the polynomial

(1 + Y )a − 1

has coefficients in Z.
Let us set for a ∈ Z and n ≥ 1

ϕa,n := ϕa : Zp[Y ]/((1 + Y )p
n

− 1)→ Zp[Y ]/((1 + Y )p
n

− 1),

with a ∈ Z/pn the residue class of a. Then the diagram

Zp[Y ]/((1 + Y )p
n − 1)

ϕa,n //

��

Zp[Y ]/((1 + Y )p
n − 1)

��
Zp[Y ]/((1 + Y )p

n−1 − 1)
ϕa,n−1// Zp[Y ]/((1 + Y )p

n−1 − 1)

with vertical arrows being the canonical projections commutes for any a ∈ Z and
n ≥ 1.

Lemma 1.13. The natural projections constitute an isomorphism

Zp[[Y ]] ∼= lim←−
n

Zp[Y ]/((1 + Y )p
n−1

− 1)

Proof. We first need to construct the morphism

Zp[[Y ]]→ lim←−
n

Zp[Y ]/((1 + Y )p
n

− 1).

For m,n ≥ 0 the element Y ∈ Z/pm[Y ]/((1 + Y )p
n − 1) is nilpotent because

(1 + Y )p
n

− 1 ≡ Y p
n

mod (p).

Therefore the canonical morphism Zp[Y ] → Z/pm[Y ]/((1 + Y )p
n − 1) extends

uniquely to a morphism

Zp[[Y ]]→ Z/pm[Y ]/((1 + Y )p
n

− 1)

taking the limit over m,n yields the desired morphism, and this morphism is easily
seen to be injective and continuous, when Zp[[Y ]] ∼=

∏
N
Zp is equipped with the

product topology. For each n ≥ 1 the morphism

Zp[[Y ]]→ Zp[Y ]/((1 + Y )p
n−1

− 1)

is surjective. By compactness of Zp[[Y ]] this implies surjectivity in the limit. This
finishes the proof. �

Let us note that the same statement is wrong when Zp is replaced by Qp, e.g.,
the ring

lim←−Qp[Y ]/((1 + Y )p
n

− 1)

is has Krull dimension 0. By Lemma 1.13 we get an endomorphism (as a Zp-algebra)

ϕa,∞ : Zp[[Y ]]→ Zp[[Y ]].
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for each a ∈ Z by taking the limit of the ϕa,n. This endomorphism is given by the
map

ϕa,∞ : Zp[[Y ]]→ Zp[[Y ]], Y 7→ (1 + Y )a − 1 :=
∑
i≥1

(
a

i

)
Y i

with (
a

i

)
:=

a(a− 1) · (a− i+ 1)

i!
.

We can do better. Namely, for each a ∈ Zp and each i ≥ 1 the binomial coefficient(
a
i

)
lies in Zp because

(
a
i

)
is continuous in a, Z ⊆ Zp is dense, Zp ⊆ Qp is closed and(

b
i

)
∈ Z ⊆ Zp for b ∈ Z. Hence, we get by the exact same formula an endomorphism

ϕa,∞ of Zp[[Y ]] for each a ∈ Zp.
The resulting map

ι : Zp → EndZp(Zp[[Y ]]), a 7→ ϕa,∞

satisfies again

ϕa·b,∞ = ϕa,∞ ◦ ϕb,∞.
Now we arrived at a concise viewpoint on the field extension

Qp(µp∞)

of Qp and Lubin-Tate were able to generalize this viewpoint to all local fields.
Before going into their resuls, let us pause and summarize how the data of ι allows
to reconstruct for a given n ≥ 1 the field extension

Qp(µpn)

of Qp. Namely, Qp(µpn) is the largest field extension occuring in the decomposition
of

Qp ⊗Zp Zp[[Y ]]/(ι(pn))

into fields. Note the interplay of Qp and Zp: The Zp-algebra

Zp[[Y ]]/((1 + Y )p
n

− 1)

is local with maximal ideal (p, Y ), and does in particular not decompose into a
product of fields. However, after tensoring with Qp it does!

For a general local field K Lubin-Tate constructed a similar datum, namely a
map

ι : OK → EndOK (OK [[Y ]])

converting multiplication into composition. The map ι is not unique but depends
on two input data:

(1) a uniformizer π ∈ K,
(2) a power series [π](Y ) ∈ OK [[Y ]] satisfying

[π](Y ) ≡ πY mod (Y )2, [π](Y ) ≡ Y q mod (πK),

where q := ]k with k := OK/mK the residue field of K.

For example, if K = Qp, π = p and

[p](Y ) = (1 + Y )p − 1 = pY +

(
p

2

)
Y + . . .+ pY p−1 + Y p.

In this case

ι(p)(Y ) = [p](Y ),
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and in general we will have
ι(π)(Y ) = [π](Y ).

Let us write
ιπ,[π]

for ι if we want to point out the dependence of ι on π and [π]. Then ιπ,[π] will be
uniquely determined by multiplicativity and the requirement

ιπ,[π](π)(Y ) = [π](Y ).

To ease notation, let us define
A := OK ,

and
Fπ := {f ∈ A[[Y ]] | f ≡ πY mod (Y )2, f ≡ Y q mod (π)}.

The construction of ιπ,[π] (and much more) will rest on the following beautiful
lemma of Lubin-Tate.

Lemma 1.14 ([LT65, Lemma 1]). Let f(Y ), g(Y ) ∈ Fπ, n ≥ 1 and let

L(Y1, . . . , Yn) =

n∑
i=1

aiYi

be a linear form with a1, . . . , an ∈ A. Then there exists a unique power series
F (Y1, . . . , Yn) ∈ A[[Y1, . . . , Yn]] such that

F (Y1, . . . , Yn) ≡ L(Y1, . . . , Yn) mod (Y1, . . . , Yn)2,

and
f(F (Y1, . . . , Yn)) = F (g(Y1), . . . , g(Yn)).

For example, pick a ∈ A, f = g = [π] and L(Y ) = aY . Then the F provided by
Lemma 1.14 will yield ιπ,[π](a)!

Proof. The proof will be by inductively finding a power series Fr(Y1, . . . , Yn) ∈
A[[Y1, . . . , Yn]] satisfying

f(F (Y1, . . . , Yn)) = F (g(Y1), . . . , g(Yn)) mod (Y1, . . . , Yn)r.

For r = 1 we can take Fr = 0, and less trivially for r = 2 we can take F2(Y1, . . . , Yn) =
L(Y1, . . . , Yn). Indeed,

f(Y ) ≡ πY ≡ g(Y ) mod (Y )2,

which implies

f(F2(Y1, . . . , Yn)) ≡ π(L(Y1, . . . , Yn)) ≡ F2(g(Y1), . . . , g(Yn)) mod (Y1, . . . , Yn)2.

Now assume that Fr has been found for r ≥ 2. Our solution Fr+1 must have the
form

Fr+1 = Fr +Gr

with Gr ∈ (Y1, . . . , Yn)r. We can calculate

f(Fr+1(Y1, . . . , Yn)) ≡ f(Fr(Y1, . . . , Yn)) + πGr(Y1, . . . , Yn) mod (Y1, . . . , Yn)r+1

because f ∈ Fπ. For the similar reason g ∈ Fπ we get

Fr+1(g(Y1), . . . , g(Yn)) = Fr(g(Y1), . . . , g(Yn))+πrGr(Y1, . . . , Yn) mod (Y1, . . . , Yn)r+1.

The equality

(3) f(Fr+1(Y1, . . . , Yn)) ≡ Fr+1(g(Y1), . . . , g(Yn)) mod (Y1, . . . , Yn)r+1
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is therefore equivalent to

(πr−π)Gr(Y1, . . . , Yn) ≡ f(Fr(Y1, . . . , Yn))−Fr(g(Y1), . . . , g(Yn)) mod (Y1, . . . , Yn)r+1.

The element πr−1 − 1 ∈ A is a unit (because A π lies in the Jacobson ideal of A),
and π ∈ A is a non-zerodivisor on

A[[Y1, . . . , Yn]]/(Y1, . . . , Yn)r+1.

Therefore, Gr solving (Equation (3)) exists (and is then uniquely determined mod-
ulo (Y1, . . . , Yn)r+1) if and only of

f(Fr(Y1, . . . , Yn))− Fr(g(Y1), . . . , g(Yn)) ∈ A[[Y1, . . . , Yn]]/(Y1, . . . , Yn)r+1

is divisible by π. But

f(Fr(Y1, . . . , Yn))−Fr(g(Y1), . . . , g(Yn)) ≡ (Fr(Y1, . . . , Yn))q−Fr(Y q1 , . . . , Y qn )) ≡ 0 mod π

because the map z 7→ zq is an A-algebra homomorphism modulo π. Having found
the Fr we can set F ∈ A[[Y1, . . . , Yn]] as the unique power series satisfying

F ≡ Fr mod (Y1, . . . , Yn)r.

This finishes the proof.3 �

Remark 1.15. Note that we only used the facts that A is π-complete and π-torsion
free, that π divides p and that the map x 7→ xq is the identity on A/π. Moreover,
it works if we replace q be some power qh, h ≥ 1..

Let us now fix f ∈ Fπ, e.g.,

f = πY + Y q

is a perfectly valid choice. For each a ∈ A Lemma 1.14 yields a uniquely determined
power series

[a]f ∈ A[[Y ]],

such that
[a]f (Y ) ≡ aY mod (Y )2

and
f ◦ [a]f = [a]f ◦ f.

Here, we defined
g ◦ h(Y ) := g(h(Y )) ∈ A[[Y ]]

for two power series g, h ∈ A[[Y ]] with vanishing constant term. The uniqueness in
Lemma 1.14 and the equality

a(bY ) ≡ (ab)Y mod (Y )2

implies that
[ab]f = [a]f ◦ [b]f

for a, b ∈ A. We can record this as the following corollary.

Corollary 1.16. For each uniformizer π ∈ A and each f = [π] ∈ Fπ there exists
a unique multiplicative map

ιπ,[π] : A→ EndA(A[[Y ]]), a 7→ (Y 7→ [a]f (Y ))

such that ιπ,[π](π)(Y ) = f(Y ) and ιπ,[π](a) ≡ aY mod (Y )2 for each a ∈ A.

3These calculations are faciliated using the following general fact: Let S be any ring and
F (X) ∈ S[X] a polynomial. If ε ∈ S satisfies ε2 = 0, then F (X + ε) = F (X) + ε · ∂

∂X
F (X).
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For A = Zp, π = p and f(Y ) = pY +
(
p
2

)
Y 2 + . . .+ Y p we, of course, recover our

previous ι. Back in the general case, the quotient

A[[Y ]]/([πn](Y ))

is a finite free A-module of rank qn (with basis 1, Y, . . . , Y q
n−1). Recall that K =

Frac(A). In complete analogy to (Equation (2)) we want to find a decomposition

(4) K[[Y ]]/([π]n](Y )) ∼= Kπ,n ×Kπ,n−1 × . . .×Kπ,1 ×K

for a nested sequence (inside some fixed separable closure K of K)

K ⊆ Kπ,1 ⊆ Kπ,2 ⊆ . . .

of abelian extensions Kπ,n with Galois group

Gal(Kπ,n/K) ∼= (OK/(π)n)×.

If f = [π] is a polynomial, then this means to factor the polynomial

[πn](Y )

into analogs of the cyclotomic polynomials. The isomorphism Gal(Kπ,n/K) ∼=
(OK/(π)n)× will be constructed in the same way as for K = Qp: The multiplicative
morphism

ιπ,[π] : OK → EndK(K[[Y ]]), a 7→ (Y 7→ [a]f (Y ))

induces for each n ≥ 1 (because of the crucial identity [p]f ◦ [a]f = [a]f ◦ [p]!) a
morphism of groups

ιn : O×K → AutK(K[[Y ]]/([π]n)),

and the resulting O×K-action must preserve the decomposition (Equation (4)) which
yields the desired isomorphism

Gal(Kπ,n/K) ∼= (OK/(π)n)×.

using that

O×K/1 + (π)n ∼= (OK/(π)n)×.

Setting

Kπ,∞

yields then the desired description

Kab = Kπ,∞K
nr.

There is however no reason to expect that

Kπ,∞ = Kπ′,∞

for different uniformizer π, π′ ∈ K, and it is thus a bit surprising that the composite

Kπ,∞K
nr

will turn out to be independent of π. Before handling this question (and also to
derive the decomposition (Equation (4))) we will make a short interlude on the
notion of a formal A-module, which is one of the central notions appearing in this
course.
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1.4. Formal groups and formal A-modules. Slightly lightening the notation of
Section 1.3 we let A denote a complete discrete valuation ring with finite residue
field k of characteristic p. We fix as before a uniformizer π ∈ A, and set q := ]k.
As before, define

Fπ := {f ∈ A[[X]] | f(X) ≡ πX mod (X)2, f(X) ≡ Xq mod (π)}.
The starting point for this subsection are the following nearly obvious corollaries
of Lemma 1.14.

Lemma 1.17. For each f ∈ Fπ there exists a unique power series Ff (X,Y ) ∈
A[[X,Y ]] such that

Ff (X,Y ) ≡ X + Y mod (X,Y )2,

and
f(Ff (X,Y )) ≡ Ff (f(X), f(Y )).

For each f, g ∈ Fπ and a ∈ A there exists a unique power series [a]f,g(X) ∈ A[[X]]
such that

[a]f,g(X) ≡ aX mod (X)2,

and
f([a]f,g(X)) = [a]f,g(g(X)).

For brevity, we will write [a]f = [a]f,f .

Proof. This is a direct consequence of Lemma 1.14. In the first case, one considers

f, g = f, L(X,Y ) = X + Y,

and in the second
f, g, L(X) = aX. �.

For example, if A = Zp and f(Y ) = (1 + Y )p − 1, then

Ff (X,Y ) = X + Y +XY.

Indeed,
f(Ff (X,Y ))

=f(X + Y +XY )

=(1 +X + Y +XY )p − 1

=((1 +X)(1 + Y ))p − 1

=(1 +X)p(1 + Y )p − 1

while

Ff (f(X), f(Y ))

=(1 +X)p − 1 + (1 + Y )p − 1 + ((1 +X)p − 1)((1 + Y )p − 1))

=(1 +X)p + (1 + Y )p − 2 + (1 +X)p(1 + Y )p − (1 + Y )p − (1 +X)p + 1

=(1 +X)p(1 + Y )p − 1.

In general, we can record the following properties of the Ff , [a]f,g.

Theorem 1.18 ([LT65, Theorem 1]). For f, g, h ∈ Fπ and a, b ∈ A, the following
properties hold true:

(1) Ff (X, 0) = X,Ff (0, Y ) = Y ,
(2) Ff (Ff (X,Y ), Z) = Ff (X,Ff (Y,Z))
(3) Ff (X,Y ) = Ff (Y,X),
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(4) Ff ([a]f,g(X), [a]f,g(Y )) = [a]f,g(Fg(X,Y ))
(5) [a]f,g([b]g,h(X)) = [ab]f,h(X)
(6) [a+ b]f,g(X) = Ff ([a]f,g(X), [b]f,g(X))
(7) [π]f (X) = f(X), [1]f (X) = X.

Proof. All of these statements follow from Lemma 1.14 and Lemma 1.17 by the
same pattern (which was already used for the construction of ι in the previous
section): First check that both sides of an equation commute in the appropriate
sense with f, g or h, and then check the identity modulo degree 2, where they reduce
to the equalities

X + 0 = X, 0 + Y = Y,

(X + Y ) + Z = X + (Y + Z),

X + Y = Y +X,

aX + aY = aX + aY,

a(bX) = (ab)X,

(a+ b)X = aX + bX,

πX = πX,

1 ·X = X.

We leave the details as an exercise. �

Item 1, Item 2 imply that Ff is a so-called (one-dimensional) formal group law
over A, Item 3 implies that this formal group is commutative, while Item 4 im-
plies that [a]f,g defines a homomorphism between the formal group laws Ff and
Fg. Finally, Item 4, Item 5, Item 6, Item 7 imply that a 7→ [a]f defines a ring
homomorphism

A→ EndFGL(A)(Ff ),

where the RHS denotes the endomorphism ring of the formal group law Ff over A.
Let us now give the relevant general definitions.

Definition 1.19. Let R be any (commutative, unital) ring. Then a power series
F ∈ R[[X,Y ]] is called a (one-dimensional) formal group law if

(1) F (X, 0) = X, F (0, Y ) = Y . In particular, F (X,Y ) ≡ X + Y mod (X,Y )2.
(2) F (X,F (Y, Z)) = F (F (X,Y ), Z) ∈ R[[X,Y, Z]].
(3) It is called commutative, if additionally the equality F (X,Y ) = F (Y,X)

holds true.

Note that Item 2 is well-defined because F (X,Y ) has no constant term. The
easiest example for a formal group law is the power series

Fadd(X,Y ) := X + Y,

which defines the so-called “additive” formal group law.
Let us check explicitly that these conditions hold for any ring R and the power

series

Fmul(X,Y ) := X + Y +XY
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from before (Fmul is the so-called “multiplicative” formal group law). Indeed,
Item 1, Item 3 are obvious and for Item 2 we can calculate

F (X,F (Y,Z))

=X + F (Y, Z) +X · F (Y,Z)

=X + (Y + Z + Y · Z) +X(Y + Z + Y · Z)

=(X + Y +X · Y ) + Z + (X + Y +X · Y )Z

=F (F (X,Y ), Z).

We now define homomorphisms between formal group laws.

Definition 1.20. Let R be a ring and F1, F2 ∈ R[[X,Y ]] two formal group laws.
A homomorphism

ϕ : F1 → F2

is a power series ϕ(X) ∈ R[[X]] such that

(1) ϕ(X) ≡ 0 mod (X)
(2) F2(ϕ(X), ϕ(Y )) = ϕ(F1(X,Y )) ∈ R[[X,Y ]].

With this notion of homomorphisms we can consider the category

FGL(R)

of formal group laws over R. For example, ϕ(X) = X defines the identity.
To enlighten the definition of a formal group law we now discuss a different

viewpoint on them. This viewpoint will help to clarify later how formal group laws
relate to (formal) schemes. The crucial point is to interpret rings of power series
functorially.

Let us fix a ring R and let

AlgR
be the category of (commutative, unital) R-algebras (thus formally AlgR is the
under category R/(Ring)). Let us equip R[[X]] with the (X)-adic topology, i.e.,
the uniqe topology with a basis of open neighborhoods of 0 given by {(X)n}n≥1,
which makes R[[X]] into a topological ring. For any R-algebra S ∈ AlgR we can
consider the set

Homcts,R(R[[X]], S)

of continuous R-algebra homomorphisms, where S is equipped with the discrete
topology. As {0} ⊆ S is open, for every continuous morphism ϕ : R[[X]]→ S there
must exist an n ≥ 1 such that

ϕ(Xn) = 0.

In particular, f(X) ∈ S is nilpotent. For each element

s ∈ N il(S) := {x ∈ S | s nilpotent }.
there exists conversely a unique continuous R-algebra homomorphism

ϕ : R[[X]]→ S

sening X to s. We obtain a natural isomorphism

Homcts,R(R[[X]],−) ∼= N il(−)

of functors AlgR → (Sets). More generally, we get

Homcts,R(R[[X1, . . . , Xn]],−) ∼= N iln(−)
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for any n ≥ 1, when R[[X1, . . . , Xn]] is equipped with the (X1, . . . , Xn)-adic topol-
ogy.

Now consider a formal group law F ∈ R[[X,Y ]] over a ring R. Pulling back a
continuous homomomorphism

ϕ : R[[X,Y ]]→ S

along the continuous map

R[[X]]→ R[[X,Y ]], X 7→ F (X,Y )

we get a natural transformation

ηF : N il ×N il→ N il
(this only uses the F has no constant term). The definition of a formal group law
implies now that for each R-algebra S the resulting operation

ηFS : N il(S)×N il(S)→ N il(S)

turns N il(S) into a group with unit 0 ∈ N il(S)!
For S ∈ AlgR and x, y ∈ N il(S) let us set

x+F y := ηF ((x, y)) = F (x, y) ∈ N il(S).

From Definition 1.19 it is clear that

0 +F y = y,

x+F 0 = x

and
(x+F y) +F z = x+F (y +F z)

for any x, y, z ∈ N il(S). In order to obtain that N il(S) is really a group we have
to prove that inverses exists. This is provided by the next lemma.

Lemma 1.21. Let R be a ring and F ∈ R[[X,Y ]] be a formal group law. Then
there exists a unique power series ϕ ∈ R[[X]] such that

F (ϕ(X), X) = 0.

Having ϕ, it is clear that
ϕ(x) +F x = 0

for any S ∈ AlgR, x ∈ N il(S), which is sufficient to see that each element in N il(S)
has an inverse with respect to +F .

Proof. We construct inductively a power series ϕn ∈ R[[X]] such that

(5) F (ϕn(X), X)) ≡ 0 mod Xn.

Clearly, we can set ϕ0(X) = −X. Now given ϕn(X) satisfying (Equation (5)) write

F (ϕn(X), X) ≡ r ·Xn mod Xn+1

for some r ∈ R. We can deduce that for s ∈ R arbitrary

F (ϕn(X) + sXn, X)

≡F (ϕn(X), X) + sXn mod Xn+1

≡rXn + sXn mod Xn+1

because F (X,Y ) = X + Y + higher terms. Thus we can set

ϕn+1(X) = ϕn(X)− rXn.
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This is moreover the unique possible choice, and the proof is finished. �

We call the functor

GF : AlgR → (Grp), S 7→ (N il(S), (−) +F (−))

the “formal group associated to the formal group law F”. It is clear that for each
S ∈ AlgR the group GF (S) is commutative if F is commutative (in fact, only if).

We will see later that if conversely

G : AlgR → (Grp)

is a functor, such that on underlying set-valued functors G = N il and

0: ∗ → G = N il

is the unit for this group structure, then G = GF for a uniquely determined formal
group law F ∈ R[[X,Y ]].

Example 1.22. The functor

Gm : AlgR → (Ab), S 7→ S×

is called the “multiplicative group” over R. For each S ∈ AlgR and each x ∈ N il(S)
we get 1 + x ∈ S×. This defines a natural inclusion(=monomorphism)

N il→ Gm, x ∈ N il(S) 7→ 1 + x ∈ X×,

which endows the functor N il with a group structure. From the equation

(1 + x)(1 + y) = 1 + x+ y + xy

we can see that this group structure is induced by the multiplicative formal group
law

Fmul(X,Y ) = X + Y +XY.

This can be reinterpreted as saying that the formal multiplicative group

Ĝm := GFmul
(X,Y )

was obtained from the (algebraic) multiplicative group Gm by “completing at the
identity section 1 ∈ Gm”. Similarly, the formal additive group

Ĝa := GFadd(X,Y )

with Fadd(X,Y ) = X + Y arises from the (algebraic) additive group

Ga : AlgR → (Ab), S 7→ S

by completing at the zero-sectio 0 ∈ Ga.

Given any endomorphism ϕ : F1 → F2 of formal group laws, then

ηϕ : GF1
→ GF2

, x ∈ GF1
(S) = N il(S) 7→ ϕ(x) ∈ N il(S) = GF2

defines a natural transformation of functors AlgR → (Ab) (and conversely any
morphism GF1 → GF2 is of this form as we will discuss later).

Exercise 1.23. Let R be a ring, and for c ∈ R set Fc(X,Y ) := X + Y + cXY .

(1) Show that Fc(X,Y ) := X + Y + cXY is a formal group law over R.
(2) Assume that R is reduced. Show that each formal group law F , which is a

polynomial, is equal to Fc for some c ∈ R.
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(3) Assume that R is a Q-algebra. Show that the “additive formal group law”
F0(X,Y ) = X + Y and the “multiplicative formal group law” F1(X,Y ) =
X + Y +XY are isomorphic.

Let us turn back to our case of interest, i.e., let A be a complete discretely
valued with finite residue field k of characteristic p with q elements, and let us fix
a uniformizer π ∈ A. Recall that

Fπ = {f ∈ A[[X]] | f(X) ≡ πX mod (X)2, f(X) ≡ Xq mod (π)},
and that for any f ∈ Fπ we constructed in Lemma 1.17 a formal group law

Ff (X,Y ) ∈ A[[X,Y ]].

The formal group law Ff (X,Y ) is special as it is equipped with many endomor-
phisms, namely the

[a]f ∈ A[[X]]

for any a ∈ A (“Ff (X,Y ) has formal complex multiplication by A”).
We abstract this data to a general definition for any A-algebra R.

Definition 1.24. A formal A-module4 over R is a formal group law F over R
together with a ring homomorphism

ι : A→ EndFGL(R)(F )

such that for each a ∈ A we have

ι(a) ≡ a ·X mod (X)2,

We will usually write [a] instead of ι(a).

Clearly, formal A-modules are functorial in R in the following sense. If α : R→ S
is a morphism of A-algebras and F a formal A-module over R, then by applying α
to the coefficients of F and the ι(a), a ∈ A, we obtain a formal A-module α∗F over
S. Instead of α∗F we will also write F ⊗̂RS occasionally.

Let us note that for a formal A-module F over R and any S ∈ AlgR the abelian
group

(N il(S), (−) +F (−))

is naturally an A-module via

a ·F x := [a](x).

This viewpoint makes it clear how we should define morphisms of formal A-modules.
Namely, a morphism f : F → G between formal A-modules over R is a power series
f(X) ∈ R[[X]], which is a morphism of the underlying formal group laws, such that

f([a]F (X)) = [a]G(f(X))

for each a ∈ A. Similarly to the case of formal group laws we get the category
FGLA(R) of formal A-modules over Spec(R) which is naturally enriched in A-
modules by pointwise taking the addition (for the formal group law)/scalar mul-
tiplication of homomorphisms. For the moment, the case R = A is the most
important one for us. By Theorem 1.18 we know that for f, g ∈ Fπ the formal
group laws Ff and Fg are isomorphic via the homomorphism

[1]g,f : Ff → Fg

4Or better, formal A-module law.
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from Lemma 1.17 (with inverse [1]f,g). We will now continue our discussion of local
class field theory.

1.5. Back to local class field theory. We continue to use the usual notation
A, π, q, k,Fπ from before.

Let us consider again the case A = Zp, f(X) = pX +
(
p
i

)
X2 + . . .+ pXp−1 +Xp

with associated formal group law

Ff (X,Y ) = X + Y +XY.

Fix an algebraic closure Qp of Qp. For n ≥ 1 the field

Qp(µpn)

arises by adjoining the pn-torsion points

µpn(Qp)

of the Qp-valued points

Gm(Qp) = Q×p
of the algebraic multiplicative group Gm. For more general A there does not exist

an analog of Gm, and so let us try to reconsider the situation with Gm by Ĝm.

There is a different reason why we should switch to Ĝm. Let Gm, Ĝm : AlgZp →
(Ab) be the algebraic resp. formal multiplicative group over Zp. Then

End(Gm) ∼= Z,

while

End(Ĝm) ∼= Zp,
where the End(−) refers to natural transformations of functors AlgZp → (Ab), cf.
Exercise 1.35.

The immediate problem is that naively

Ĝm(Qp) = N il(Qp) = 0

if we consider Qp a “discrete” Zp-algebra. There are two ways to fix this problem.
In the first (which is the one used in [LT65]) one uses that the p-adic valuation on
Qp extends uniquely to a valution

ν : Qp → Q ∪ {∞}

(using Proposition 1.5), and that this yields an associated (non-discrete) metric
topology on Qp. If x ∈ Qp satisfies ν(x) > 0, then for a power series ϕ(x) =∑
i≥0

aiX ∈ Zp[[X]] the series

ϕ(x) =
∑
i≥0

aix
i

converges, even if Qp is not complete. Namely, x lies in some finite extension L of
Qp, and then ϕ(x) converges in L as L is complete by Proposition 1.5. Argueing
similarly for Ff (X,Y ) we can therefore define a group structure (even a Zp-module
structure) on

Ĝm(Qp) := {x ∈ Qp | ν(x) > 0}
using Ff , and the pn-torsion points in this group define the field Qp(µn).
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In the second approach one just passes to the completion

Cp := Q̂p
of Qp, and defines

Ĝm(Cp) = mCp := {x ∈ Cp | ν(x) > 0}.
By completeness of Cp the relevant power series converge and yield a Zp-module

structure on Ĝm(Cp). Note that although

Ĝm(Qp) ( Ĝm(Cp)

the subgroups of pn-torsion points agree for each n ≥ 1 as torsion points are alge-
braic over Qp.

Let us generalize this to arbitrary A. Fix a separable closure

K

of K, and π ∈ A, f ∈ Fπ as before. For any algebraic extension L of K we set

GFf (L) := mL := {x ∈ L | ν(x) > 0},
where ν : L → Q ∪ ∞ is the unique extension of the valuation on K. The formal
group law Ff and its endomorphisms [a]f for a ∈ A define a functorial A-module
structure on

GFf (L) := mL := {x ∈ L | ν(x) > 0}.
In particular, if L/K is Galois the Galois action of Gal(L/K) on

GFf (L)

is A-linear.
We can now (finally) define the Lubin-Tate extensions of K.

Definition 1.25. For n ≥ 1 we define

Λf,n := ker(GFf (K)
[πn]f−−−→ GFf (K)) ⊆ K

as the πn-torsion in the A-module GFf (K), and

Kπ,n = K(Λf,n).

If f, g ∈ Fπ, then the (A-linear) isomorphism [1]f,g : Fg ∼= Ff from Theorem 1.18
restricts to an isomorphism

[1]f,g : Λg,n → Λf,n, x 7→ [1]f,g(x).

Therefore even if the subset Λf,n ⊆ K depends on f , the resulting field extension

Kπ,n

does not. The natural action of Gal(K/K) on GFf (K) preserves Λf,n and therefore
the field Kπ,n is Galois over K. As we can take f(X) = πX+Xq, we see that Kπ,n

is very concretely the splitting field of the polynomial

[πn]f (X) = f(f(. . . (f(X)) . . .)
n−fold composition

∈ K[X]

We want to analyze the field Kπ,n further, and in particular prove that the
natural morphism

Gal(Kπ,n/K)→ AutA(Λf,n)
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and

(A/πn)× → AutA(Λf,n)

are isomorphisms (proving that Kπ,n/K is abelian with Galois group (A/πn)×).

Theorem 1.26 ([LT65, Theorem 2]). Let A, π, f ∈ Fπ as before, and set M :=
GFf (K). The following hold true:

(1) The A-module M is divisible, i.e., for each a ∈ A \ {0} the multiplication

M
a−→M is surjective.

(2) For each n ≥ 1 there exists an isomorphism Λf,n = M [πn] ∼= A/πn.
(3) The A-module Λf :=

⋃
n≥0

Λf,n = M [π∞] is isomorphic to K/A.

(4) For σ ∈ Gal(K/K) there exists a unique xσ ∈ A× such that

σ(λ) = xσ · λ := [xσ](λ)

for all λ ∈ Λf .

Proof. As the formal A-modules Ff , Fg for different choice f, g ∈ Fπ are all isomor-
phic (via [1]f,g), we may assume that

f(X) = πX +Xq.

For any z ∈M ⊆ K the zeros of the polynomial

f(X)− z = Xq + πX − z

lie in mK as f(X) ≡ Xq mod mK . Moreover, f(X) is separable as its derivative

f ′(X) = qXq−1 + π

does not have a zero in mK because ν(q) ≥ ν(π). Clearly,

Λf,1 = {x ∈M | f(x) = 0}

because f(X) = [π]f . In particular,

]Λf,1 = q = ]k.

As A-action on Λf,1 factors over A/π = k, this implies

Λf,1 ∼= k

as A-modules. Lemma 1.27 below implies Item 2 and Item 3. As the Gal(K/K)-
action on Λf = M [π∞] is A-linear the existence of xσ for σ ∈ Gal(K/K) follows
from another application of Lemma 1.27. This finishes the proof. �

Lemma 1.27. Let N be a divisible A-module such that N [π] ∼= A/π. Then

N [π∞] ∼= K/A,

and in particular,

A ∼= EndA(N [π∞]).

Proof. By the assumption N [π] ∼= A/π and the structure theory of finitely gener-
ated A-modules each finitely generated A-submodule M0 ⊆ N [π∞] must be isomor-
phic to A/πn for some n ≥ 0. The multiplication π : N → N induces (by divisibility
of N) a short exact sequence

0→ N [π]→M1 →M0 → 0
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for a finitely generated A-submodule M1 ⊆ N [π∞]. We can conclude that M1
∼=

A/πn+1. Continuing we find that

N [π∞] ∼= lim−→
n≥0

π−nA/A ∼= K/A.

For the last statement note that

HomA(K/A,K/A)

∼=HomA(lim−→
n≥0

π−nA/A,K/A)

∼= lim←−
n≥0

HomA(π−nA/A,K/A)

∼= lim←−
n≥0

HomA(π−nA/A, π−nA/A)

∼= lim←−
n≥0

A/πn

∼=A
by completeness of A. �

We obtain as a consequence a description of Gal(Kπ,n/K).

Lemma 1.28. For n ≥ 1 we have

(1) [Kπ,n : K] = (q − 1)qn−1

(2) Kπ,n is totally ramified over K
(3) The map σ 7→ xσ induces an isomorphism

Gal(Kπ,n/K) ∼= A×/(1 + πnA).

Proof. Assume as in Theorem 1.26 that f(X) = Xq + πX. Write

fn(X) = f(f(. . . (f(X)) . . .)) = Xqn + . . .+ πnX

for the n-fold composition of f . Note that by definition we have

Λf,n = {x ∈ GFf (K) | fn(x) = 0}.

We can factor fn(X) (similarly to factoring Xpn − 1 into cyclotomic polynomials!)
as

Φn(X)Φ(X)n−1 · · ·Φ1(X)Φ0(X)

with Φ0(X) = X and

Φi(X) =
f i(X)

f i−1(X)
=
f(f i−1(X))

f i−1(X)
= (f i−1(X))q−1 + π

for i ≥ 1. We see that Φi(X) is an Eisenstein polynomial, therefore irreducible, and
of degree (q − 1)qi−1. As Kπ,i is the splitting field of Φi(X) for each i, it follows
that

[Kπ,n : K] = (q − 1)qn−1

and that Kπ,n is totally ramified over K. The natural morphism

Gal(Kπ,n/K)→ AutA(Λf,n) ∼= A×/(1 + πnA)

is injective as Λf,n generates Kπ,n. We can then conclude because

](Gal(Kπ,n/K)) = [Kπ,n : K] = (q − 1)qn−1 = ](A×/(1 + πnA))

using Theorem 1.26. �
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Passing to the colimit we therefore obtain the natural isomorphism

Gal(Kπ/K) ∼= A×, σ 7→ xσ.

for Kπ = K(Λf ) =
⋃
n≥0

Kπ,n. As Kπ,n is totally ramified over K by Lemma 1.28,

we obtain an isomorphism

A× × Ẑ ∼= Gal(KπK
nr/K).

Our next aim will be to prove that for each uniformizer π ∈ A we have

Kab = KπK
nr.

Following [Gol81] we will deduce this from the theorem of Hasse-Arf.

1.6. Higher ramification groups. In order to prove that

Kab = KπK
nr

for a (non-archimedean) local field, we need at least one statement concerning all
abelian extensions of K. This statement will be the theorem of Hasse-Arf, cf.
Theorem 1.40. In order to state it, we need to introduce the higher ramification
groups of K, cf. [Ser13, Chapter IV], which in the case of Kπ,n mimick the filtration

{0} ⊆ (1 + πn−1A)/(1 + πnA) ⊆ . . . ⊆ (1 + πA)/(1 + πnA) ⊆ A×/(1 + πnA)

on

A×/(1 + πnA) ∼= Gal(Kπ,n/K).

In the following, let A be any complete discrete valuation ring, that is we don’t
assume that the residue field k of A is finite. Let

K := Frac(A),

and fix a uniformizer π ∈ A. We still assume that k is perfect. This has the
consequence that for each finite extension L/K with ring of integers B = OL and
uniformizer πL the extension

kL := B/(πL)

of k is separable, and therefore Proposition 1.10 holds true as well.
We denote by

νL : L→ Z ∪ {∞}
the normalized valuation of L, i.e., νL(πL) = 1. Assume in addition that L/K is
Galois (not necessarily abelian) and set

G := Gal(L/K).

Let L0 ⊆ L be the maximal subextension of L/K such that L0/K is unramified.
By Proposition 1.10 we get a natural isomorphism

Gal(L0/K) ∼= Gal(kL/k),

and thus a short exact sequence

1→ IL/K → G→ Gal(kL/k)→ 1

with IL/K = Gal(L/L0) the so-called inertia subgroup of G. In other words,

IL/K = ker(G→ Aut(B/(πL))).

More generally, we can define the higher ramification subgroups Gi ⊆ G, i ≥ −1.
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Definition 1.29. For i ≥ −1 we set

Gi := ker(G→ Aut(B/(πL)i+1)).

In particular, the Gi form a decreasing sequence of normal subgroups in G and
G−1 = G,G0 = IL/K .

As B ∼= lim←−
i

B/(πL)i+1 by πL-adic completeness of B, we get

⋂
i

Gi = {1},

i.e., Gi = {1} for i� −1. We call the i ≥ −1 such that Gi 6= Gi+1 the “jumps” of
the filtration Gi, i ≥ −1.

Let H ⊆ G be a subgroup with corresponding subfield

K ′ = LH .

It is clear that for each i ≥ −1

Hi = Gi ∩H,

where the LHS denotes the ramification filtration of the Galois groupH = Gal(L/K ′)
of the field extension L/K ′.

For simplicity we may therefore assume that L/K is totally ramified, i.e, L0 = K
(or equivalently, G0 = G) by replacing K with L0. Then

B = A[πL]

as follows from the fact that the minimal polynomial of πL over K is Eisenstein.
Let us define the function

iG : G→ Z≥0 ∪ {∞}, s 7→ νL(s(πL)− πL).

Then
iG(s) ≥ i+ 1⇔ s ∈ Gi

for s ∈ G as follows easily from the definitions and the fact that B = A[πL]. In
particular, iG is independent of the choice of πL. For a subgroup H ⊆ G we clearly
have iH = (iG)|H .

Let us now calculate the function iG (and thus the ramification filtration) for
the field Kπ,n from Section 1.5.

Example 1.30. Assume that K, L = Kπ,n, f are as in Section 1.5. To compute
the ramification filtration on

G = Gal(Kπ,n/K) ∼= A×/(1 + πnA), s 7→ xs

we first have to find a suitable uniformizer πL ∈ L. From the proof of Lemma 1.28
we can take as πL any πn-torsion point in Λf,n of “exact order n”, i.e., πL ∈
Λf,n \Λf,n−1. As the choice of f does not matter, we may take f(X) = Xq+πX in
the following. We will see later that in general G1 ⊆ G = G0 is the unique p-Sylow
subgroup of G. This implies that

G1
∼= (1 + πA)/(1 + πnA).

Let s ∈ G1 and write xs = 1 + aπiA with a ∈ A×. Then

s(πL) = [xs](πL) = [1](πL) +Ff [aπi](πL) = πL +Ff [aπi](πL),
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and using Ff (X,Y ) = X + Y + higher terms we have to find

iG(s) = νL([aπi](πL)).

As [a](x) = ax+ higher terms in x with a ∈ A×, we get

νL([aπi](πL)) = νL([πi](πL)).

We claim that

(6) νL([πi](πL)) = qi

for 1 ≤ i < n. Indeed, for i = 1 (which forces n ≥ 2) we have

[π](πL) = πqL + ππL

and νL(ππL) = (q−1)qn−1+1 > q = νL(πqL) by Lemma 1.28. For i > 1 we compute

[πi](πL) = ([πi−1](πL))q + π[πi−1](πL)

and by induction

νL(π[πi−1](πL)) = (q − 1)qn−1 + qi−1,

which is strictly greater than

qi = νL(([πi−1](πL))q)

because n > i. This proves (Equation (6)). We get that for any s ∈ G1

iG(s) = qi

if xs ∈ (1 +πiA)\ (1 +πi+1A). We therefore obtain that the jumps of the filtration
Gi, i ≥ 0, are exactly the values

0 = q0 − 1, q1 − 1, q2 − 1, . . . , qn−1 − 1

and that the quotient Gj/Gj+1 at a jump j is k× = A×/(1 + πA) if j = 0 or
k ∼= (1 + πi)/(1 + πi+1A) if j = qi − 1 ≥ 1. For completeness let us mention that

iG(s) = 1

if s ∈ G0 \G1 because if xs = a+ bπ with a ∈ A× \ 1 + πA, b ∈ A, then

νL(s(πL)− πL) = νL((a− 1)πL) = 1.

In general, the function iG(s) is constant on the subset Gi \Gi+1. Now assume
that H ⊆ G is a normal subgroup, or equivalently that

K ′ := LH

is Galois over K.
We want to relate iG and iG/H (and thus the ramification filtration of G with

that of G/H).

Lemma 1.31 ([Ser13, Chapter 3, Proposition 3]). For every s = sH ∈ G/H we
have

iG/H(s) =
1

eL/K′

∑
t∈sH

iG(t),

where eL/K′ = [L : K ′] = ]H is the ramification index of L/K ′.
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Proof. We may assume that s 6= 1 ∈ G/H as otherwise both sides equal ∞. Let
πK′ ∈ K ′ be a uniformizer. Then

iG/H(s) = νK′(s(πK′)− πK′) = e−1
L/K′νL(s(πK′)− πK′),

while ∑
t∈sH

iG(t) =
∑
t∈H

νL(st(πL)− πL) = νL(
∏
t∈H

(st(πL)− πL)).

Hence it suffices to see that

a := s(πK′)− πK′
and

b :=
∏
t∈H

(st(πL)− πL)

generate the same ideal in B = OL. Let

f(X) ∈ OK′ [X]

be the minimal polynomial of πL over K ′, and let s(f) ∈ B[X] be the polynomial
obtained from f(X) by applying s to the coefficients of f . The element a = s(πK′)−
πK′ divides

s(f)− f
as each coefficient of f can be written as a polynomial (with A-coefficents) in πK′

and s fixes each element in A. This in turn implies that a divides s(f)(πL)−f(πL) =
s(f)(πL) = ±b because

f(X) =
∏
t∈H

(X − t(πL)).

Because B = A[πL] we can write πK′ = g(πL) for some polynomial g(X) ∈ A[X].
The polynomial g(X) − πK′ ∈ OK′ is divisible by f because it has πL as a root.
Hence, we can write

g(X)− πK′ = f(X)h(X)

for some h(X) ∈ OK′ [X]. We get

a

=s(πK′)− πK′
=s(f)(X)s(h)(X) + s(g)(X)− f(X)h(X)− g(X)

=s(f)(X)s(h)(X)− f(X)h(X)

because g has coefficients in A. Substituting πL for X we obtain

a = s(f)(πL)s(h)(πL) = ±bs(h)(πL)

as desired. �

From Lemma 1.31 it is not difficult to conclude that if H = Gj , j ≥ −1, then

(G/H)i = GiH/H =

{
{1} if i ≥ j
Gi/H if i < j.

Indeed, if i < j we can calculate for s ∈ Gi \Gi+1

iG/H(s) =
1

eL/K′

∑
t∈H

iG(st) = iG(s)
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because iG is constant on the coset sH ⊆ Gi\Gi+1. On the other hand iG/H(s) =∞
if s ∈ Gj = H. As

iG/H(σ) ≥ i+ 1⇔ σ ∈ (G/H)i

we can conclude.
Before describing the filtration (G/H)i, i ≥ −1, for more general H, we describe

the quotients
Gi/Gi+1, i ≥ 0.

Lemma 1.32. Let s ∈ G = G0. Then

s ∈ Gi ⇔ iG(s) = νL(ν(πL)− πL) ≥ i+ 1⇔ s(πL)

πL
≡ 1 mod (πL)i.

Proof. This follows directly from the definitions. �

For i ≥ 0 set
U iL := 1 + πiB,

which is a subgroup of B× = U0
L. By πL-adic completeness of B we get

U0
L/U

1
L
∼= (B/πL)×, B× = lim←−

i

U0
L/U

i
L.

For each i ≥ 1 we have an isomorphism

U iL/U
i+1
L
∼= B/πL, x mod U i+1

L 7→ x− 1

πi
mod (πL)

of additive groups.
We get the following interesting consequence.

Corollary 1.33. For i ≥ 0 the map (of sets)

Gi → U iL, s 7→
s(πL)

πL
induces an injective homomorphism

θi : Gi/Gi+1 ↪→ U iL/U
i+1
L ,

which is independent of the choice of πL.

Proof. By Lemma 1.32 the map is well-defined. We first prove independence of πL
of the map

Gi → U iL/U
i+1
L , s 7→ s(πL)

πL
.

For this let π′ = uπL ∈ B be another uniformizer with u ∈ B×. Then

s(u) = u mod (πi+1)

for s ∈ Gi. This implies s(u)
u ≡ 1 mod (πi+1) and hence

s(π′)

π′
=
s(u)

u

s(πL)

πL
≡ s(πL)

πL
mod U i+1

L .

Now we can prove additivity of Gi → U iL/U
i+1
L . If s, t ∈ Gi, then t(πL) ∈ B is a

uniformizer, and hence by the proven independence

st(πL)

πL
=
s(t(πL))

t(πL)

t(πL)

πL
≡ s(πL)

πL

t(πL)

πL
mod U i+1

L

as desired. �
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Corollary 1.33 has interesting consequence. Namely,

(1) The quotient G0/G1 is cyclic of order prime to the characteristic of k be-
cause this holds for each finite subgroup of k× ∼= U0

L/U
1
L.

(2) If char(k) = 0, then for each i ≥ 1 we must have Gi/Gi+1 = {1} as
k ∼= U iL/U

i+1
L
∼= B/πL has no non-trivial finite subgroups.

(3) If char(k) = p > 0, then for i ≥ 1 the group Gi/Gi+1 must be a finite
direct sum of copies of Fp as it embeds into the additive subgroup k. In
particular, G1 is the unique p-Sylow subgroup of G0.

(4) The group G0 is solvable, which combined with the fact that unramified
extensions of local fields are abelian, implies that if K is a local field, and
L/K finite Galois, then Gal(L/K) is solvable.

Let as before K be a complete discretely valued field (with perfect residue field
k), and L/K a finite Galois extension (not necessarily totally ramified). Then
G1 = {1} if and only of eL/K is prime to the characteristic of k. Such an extension
is called tamely ramified. We give the following exercise describing these.

Exercise 1.34. Assume that L/K is tamely ramifed with e = [L : K] and that
the residue field of K is algebraically closed. Then

L = K( e
√
π)

for a suitable uniformizer π ∈ K.

In particular, if p = char(k) (possibly p = 0)⋃
n≥1, p-n

KnrK( n
√
π)

is the maximal tamely ramified extension of K. This implies that for K = k((t))
with k algebraically closed and of characteristic 0, the field⋃

n≥1

k((t1/n))

is algebraically closed.
After having described the Gi/Gi+1 our next task is to describe the ramification

filtration on G/H for a general subgroup H ⊆ G = Gal(L/K).

Exercise 1.35. (1) Prove the Yoneda lemma: Let C be a category and for
c ∈ C let hc(−) := HomC(−, c) be its contravariant Hom-functor. Let
F : Cop → (Sets) be a functor. Then there exists a natural bijection

HomFun(Cop,(Sets))(hc, F ) ∼= F (c).

(2) Let R be a ring. Show that the natural transformations η : N il→ N il are
in natural bijection with the set {f(X) ∈ R[[X]] | f(0) ∈ N il(R)}.

(3) Let p be a prime and let

Gm, Ĝm : (AlgZp)→ (Sets)

be the algebraic and formal multiplicative group over Zp. Then EndZ(Gm) ∼=
Z, while EndZ(Ĝm) ∼= Zp.
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1.7. The theorems of Herbrand and Hasse-Arf. As in the previous section
we let K = Frac(A) be a complete discretely valued field with perfect residue
field k, and L/K a finite Galois extension (not necessarily totally ramified) with
G := Gal(L/K) equipped with its higher ramification filtration Gi, i ≥ −1, and
associated function iG.

We also fix a normal subgroup H ⊆ G with corresponding subfield

K ′ := LH ⊆ L,

which is Galois over K.
Roughly, Herbrand’s theorem implies that for each i ≥ −1 the ramification

subgroup

(G/H)i

for G/H = Gal(K ′/K) is of the form

GjH/H

for some j ≥ −1, which might be different from i. In order to state the result
precisely we set

Gu := Gi

for u ∈ R, u ≥ −1, where i ≥ u is as the smallest integer.
Now set

ϕ := ϕL/K(u) :=

u∫
0

1

[G0 : Gt]
dt

for u ≥ −1. Here, we defined

[G0 : G−1] = [G−1 : G0].

Note that ϕ(u) = u for −1 ≤ u ≤ 0.
Let us directly give an example by computing the caseK local and L = Kπ,n, n ≥

1, from Section 1.5.

Example 1.36. In Example 1.30 we computed the higher ramification groups for
the extension Kπ,n of a local field K with uniformizer π ∈ K. The function

R≥−1 → R, t 7→ 1

[G0 : Gt]

is piecewise constant by definition. From here, one obtains that

ϕ : R≥−1 → R,

is the unique, concave polygon starting at (−1,−1) with slopes

1, 1/(q − 1), 1/(q − 1)q, . . . , 1/(q − 1)qn−1.

and break points 0, q − 1, q2 − 1, . . . , qn − 1.

In general,

ϕ(u) =
1

]g0
(g1 + g2 + . . .+ (u− i)gi+1)

for u ∈ R≥0, i ∈ Z, such that i ≤ u ≤ i+ 1, and gi := ]Gi.
We can now state Herbrand’s theorem precisely.
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Theorem 1.37 (Herbrand). For any u ≥ −1 we have

(G/H)v = GuH/H

if v = ϕL/K′(u).

Before proving Herbrand’s theorem let us introduce the upper numbering of the
higher filtration groups.

Lemma 1.38. The function ϕL/K : R≥−1 → R≥−1 is a piecewise linear, concave,
increasing homeomorphism with ϕ(0) = 0.

For u ∈ R≥−1 \ Z the function ϕ is differentiable at u with derivative 1
[G0:Gu] .

For u ∈ Z≥0 the left derivative of ϕ is 1
[G0:Gu] while its right derivative is 1

[G0:Gu+1] .

Let

ψ := ψL/K := (ϕL/K)−1 : R≥−1 → R≥−1

be the inverse of ϕ.
Via ψ we can define ramification groups in the upper numbering of G via

Gv := Gψ(v)

for v ∈ R≥−1. Theorem 1.37 can then nicely be reformulated as saying that

(G/H)v = GvH/H

for all v ∈ R≥−1. Indeed, we will prove this in Lemma 1.44.

Example 1.39. Let us continue Example 1.30, Example 1.36 and compute the
ramification filtration on G = Gal(Kπ,n/K) in the upper numbering. The jumps
of Gv = Gψ(v), v ≥ −1, are precisely the values

ϕ(u)

for u ≥ −1 a jump for the filtration Gu. We computed that these are precisely

0, q − 1, q2 − 1, . . . , qn−1 − 1

with

G0 = A×/(1 + πnA) ⊇ G1 = Gq−1 = (1 + πA)/(1 + πnA)

and for 1 ≤ i < n

Gqi−1 = (1 + πiA)/(1 + πnA).
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Now we calculate for 1 ≤ i < n

ϕ(qi − 1)

=

qi−1∫
0

1

[G0 : Gu]
du

=

i∑
j=1

qj−1∫
qj−1−1

1

[G0 : Gqj−1]

=

i∑
j=1

(qj − qj−1)
1

(q − 1)qj−1

=

i∑
j=1

1

=i.

Hence, Gv, v ≥ −1, has its jumps precisely at

0, 1, 2, . . . , n− 1.

and

ψ(i) = qi − 1

for 0 ≤ i < n. For v ≥ n− 1 we have

ψ(v) = (q − 1)qn−1(v − n+ 1) + qn−1 − 1,

i.e., the final slope of ψ is (q − 1)qn−1.

In particular, we see that the jumps in the upper numbering filtration on Gal(Kπ,n/K)
are integers (rather than rationals). The theorem of Hasse-Arf implies that this is
the case for all abelian extensions of a complete discretely valued field K.

Theorem 1.40 (Hasse-Arf). Let L/K be an abelian extension. Then the jumps
for the upper ramification filtration Gv, v ∈ R≥−1, on G := Gal(L/K) lie in Z.

Here a jump in the filtration Gv, v ∈ R≥−1 is a real number v ∈ R≥−1 such that

Gv 6= Gv+ε

for all ε > 0.
Note that by Theorem 1.37 the local Kronecker-Weber theorem, cf. Theorem 1.46,

and Example 1.39 imply Theorem 1.40 if K is a (non-archimedean) local field.
We will present a proof of Theorem 1.40 in Section 1.9. Now we turn to the

proof of Theorem 1.37.
We have to establish some lemmata. We continue to write gi = ]Gi for i ≥ 0.

Lemma 1.41. For u ≥ 0 we have

ϕL/K(u) = θ(u) :=
1

g0

∑
s∈G

(min{iG(s), u+ 1} − 1)

with iG(s) = νL(s(πL)− πL) the function discussed in Section 1.6.
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Proof. For s ∈ G the function min{iG(s), u+1} is concave, continuous and piecewise
linear. This implies the same for θ. Moreover,

θ(u) = 0 = ϕ(u).

Hence, it suffices to see that for i < u < i+ 1 the derivatives of θ and ϕ agree. For
ϕ the derivative is gi+1

g0
. For θ the derivative is

1

g0

∑
s∈G, iG(s)≥i+2

1 =
gi+1

g0

as desired. �

Lemma 1.42. For σ = sH ∈ G/H set

j(σ) := max{iG(t) | t ∈ sH}.
Then

iG/H(σ)− 1 = ϕL/K′(j(σ)− 1).

Proof. We may assume that

j(σ) = iG(s) := m.

If t ∈ H with t ∈ Hm−1, then st ∈ Hm−1 by construction of s. Thus iG(st) ≥ m,
and hence iG(st) = m. For t ∈ H \Hm−1. we obtain

iG(st) = iG(t)

because for i < m− 1 we have st ∈ Hi if and only if t ∈ Hi. Combining both cases
we obtain

iG(st) = min{iG(t),m}
for each t ∈ H. By Lemma 1.31 we get

iG/H(σ) =
1

eL/K′

∑
t∈H

iG(st) =
1

h0

∑
t∈H

min{iG(st),m}.

By Lemma 1.41 for H and iG(t) = iH(t) the last term equals

1

h0

∑
t∈H

min{iG(st),m} = 1 + ϕL/K′(m− 1).

This finishes the proof. �

Now we can prove Theorem 1.37

Proof of Theorem 1.37. With the notations in Lemma 1.42 we get for σ ∈ G/H
σ ∈ GuH/H

⇔j(σ)− 1 ≥ u
ϕL/K′ strictly increasing

⇔ ϕL/K′(j(σ)− 1) ≥ ϕL/K′(u)

Lemma 1.42⇔ iG/H(σ)− 1 ≥ ϕL/K′(u)

⇔σ ∈ (G/H)v

as v = ϕL/K′(u). �

The functions ϕL/K , ψL/K enjoy the following transitivity in field extensions.
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Lemma 1.43. We have

ϕL/K = ϕK′/K ◦ ϕL/K′
and

ψL/K = ψL/K′ ◦ ψK′/K .

Proof. We only have to prove the statement for ϕ. For u = −1 we get

ϕL/K(−1) = −1 = ϕK′/K ◦ ϕL/K′(−1).

As both sides are continuous it suffices to show that for any u ∈ R≥−1 \ Z the
derivatives coincide. Set v := ϕL/K′(u). We get

(ϕK′/K ◦ ϕL/K′)′(u)

=ϕ′K′/K(v) · ϕ′L/K′(u)

=
](G/H)v
eK′/K

](Hu)

eL/K′

Theorem 1.37
=

](GuH/H

eK′/K

](Hu)

eL/K′

eL/K=eK′/KeL/K′
=

]Gu
eL/K

=ϕ′L/K(u).

This finishes the proof. �

Now we can prove the desired compatibility of the upper numbering filtration
with passage to quotients.

Lemma 1.44. We have

(G/H)v = GvH/H

for all v ∈ R≥−1.

Proof. We have
(G/H)v

x:=ψK′/K(v)
= (G/H)x

w:=ψL/K′ (x)
= GwH/H

u:=ϕL/K(w)
= GuH/H

Lemma 1.43 implies

u = ϕL/K(ψL/K′(ψK′/K(v))) = ϕL/K(ψL/K(v)) = v

and we win. �

Lemma 1.44 has the pleasant consequence that for we can extend the upper
numbering ramification filtration to infinite Galois extensions. Namely, if L/K is
an arbitrary, possibly infinite, Galois extension and G = Gal(L/K), then we can
set

Gv := lim←−
H

(G/H)v
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for v ≥ −1, where the limit runs over all open, normal subgroups H ⊆ G. Then
the Gv ⊆ G, v ≥ −1, are a decreasing sequence of normal closed subgroups, and
GvH/H = (G/H)v for any H ⊆ G open, normal and v ≥ −1. Moreover,⋂

v≥−1

Gv = {1}

as the intersection must be contained in the intersection of all open, normal sub-
groups H ⊆ G.

Example 1.45. For Kπ =
⋃
n≥1

Kπ,n the infinite Lubin-Tate extension from Sec-

tion 1.5 we conclude from Example 1.39 that the jumps of G = Gal(Kπ/K) in the
upper numbering filtration are nicely given by

0, 1, 2, . . . .
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1.8. Proof of the local Kronecker-Weber theorem. In this section we want
to deduce the local Kronecker-Weber theorem from the Hasse-Arf theorem. Let us
recall its statement.

Theorem 1.46 (local Kronecker-Weber). Let K be a (non-archimedean) local field
and π ∈ K a uniformizer. Then

KπK
nr

is the maximal abelian extension of K.

Here, Knr is the maximal unramified extension of K (inside some fixed separable
closure of K), and Kπ the Lubin-Tate extension associated with π from Section 1.5.

Proof. The proof follows [Gol81]. Let L/K be an abelian extension. We want to
prove that

L ⊆M := KπK
nr.

Consider the short exact sequence

1→ Gal(L ·M/M)→ Gal(M · L/Kπ)→ Gal(M/Kπ)→ 1

of abelian profinite groups. As

Gal(M/Kπ) ∼= Gal(Knr/K) ∼= Ẑ

there exists a splitting s : Gal(M/Kπ)→ Gal(M · L/Kπ). The fixed field

F

for the (closed) image of s is a totally ramified extension of Kπ with F ·M = L ·M
and F/K (infinite) abelian. Now the claim follows from Lemma 1.47. �

Lemma 1.47. Let F/Kπ be a totally ramified extension with F/K abelian. Then
F ⊆ Kπ.

The field Kπ is no longer discretely valued (due to its infinite ramification). With
F/Kπ totally ramified we therefore mean F ∩KπK

nr = Kπ.5

Proof. Set H := Gal(F/Kπ) ⊆ G := Gal(F/K). As F/Kπ is totally ramified

G = G0.

For v ≥ −1 let us write

Gv+ :=
⋃
ε>0

Gv+ε.

Hence, Gv 6= Gv+ if and only if v is a jump. It is sufficient to show that for any
jump v ∈ R≥0 of the filtration Gv, v ≥ 0, we have

Gv ∩H = Gv+ ∩H.
Indeed, if true this implies

H ⊆ Gv

for each v ≥ 0, and hence H = {1} as
⋂
v≥0

Gv = {1}. But H = {1} implies F = Kπ

and hence the lemma. Let v ≥ 0. Then

(7) [Gv : Gv+] = [(G/H)v : (G/H)v+][Gv ∩H : Gv+ ∩H]

5Alternatively, each element Gal(F/Kπ) acts trivially on the residue field of F .
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using (G/H)v = GvH/H, cf. Lemma 1.44. We have

G/H ∼= Gal(Kπ/K)

and thus by Example 1.45 we know that

[(G/H)v : (G/H)v+] =


q − 1, v = 0

q, v ∈ Z≥1

1, v ∈ R≥0 \ Z.
In particular,

[(G/H)v : (G/H)v+] ≥ q − 1

if [(G/H)v : (G/H)v+] 6= 1. From Corollary 1.33 we know that

[Gv : Gv+] ≤ q
for each v ≥ −1. Hence, if

[Gv ∩H : Gv+ ∩H] 6= 1,

then by (Equation (7)) we can conclude that

[(G/H)v : (G/H)v+] = 1,

i.e., that v is not an integer, and that v is a jump of Gv, v ≥ 0. However, this is a
contradiction to Theorem 1.40 as we assumed that F/K is abelian. �

In the proof of Lemma 1.47 we used the assumption that G = Gal(F/K) is
abelian only to conclude by the theorem of Hasse-Arf that the jumps Gv, v ≥ 0, are
integers. In particular, for any totally ramified extenstion F/Kπ with Gal(F/K)
not abelian, not all jumps on G = Gal(F/K) can be integers.

Serre gave an example of a non-abelian extension L/K with jumps in the upper
numbering not all integral. In fact it is sufficient that

G = Gal(L/K)

is isomorphic to the quaternion group of order 8 and G4 = {1}, cf. [Ser13, Chapter
3, §3, Exercise 2].6 The jumps occur at

1, 3/2.

1.9. Proof of the Hasse-Arf theorem. We now want to give the proof for the
Hasse-Arf Theorem 1.40 following [Sen69], cf. [Yos08, Theorem 6.11]. Let us recall
the situation and thus fix a complete discretely valued field K with ring of integers
A = OK and perfect residue field k. Let L/K be a finite Galois extension with
abelian Galois group G := Gal(L/K) and set B := OL. Set

n := [L : K] = ]G.

We want to see that if v ≥ −1 is a jump for the ramification filtration Gv of G in
the upper numbering, i.e.,

Gv 6= Gv+ :=
⋃
ε>0

Gv+ε,

then v is an integer. Equivalently, we want to see that if Gi 6= Gi+1 in the lower
numbering with i ∈ Z≥−1, then

v := ϕL/K(i) ∈ Z.

6I used [Ser13, Chapter 3, Proposition 11] when solving this exercise.
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The cases i = −1, 0 are clear as ϕL/K(−1) = −1 and ϕL/K(0) = 0. If i ≥ 0, then

ϕL/K(i) =
1

g0
(g1 + g2 + . . . gi),

where gi := ]Gi as was remarked in Section 1.7.
One can make the following initial reductions.

• If Gv 6= Gv+, then by the structure theorem of finite abelian groups, there
exists a subgroup H ⊆ G with G/H cyclic and GvH/H 6= Gv+H/H. Using
Herbrand’s theorem Theorem 1.37 and replacing L by LH reduces us to the
case that G is cyclic.
• Writing G as a product of cyclic subgroups of prime power order reduces

us by the same argument as before to the case that ]G is a prime power.
• If L/K is tamely ramified, i.e., ]G is prime to the characteristic of k, then
G1 = {1} and we are done.

Hence, we reduced to the case that G is a cyclic p-group of order pm for some
m ≥ 1, where p > 0 is the characteristic of k. In particular, G0 = G1 and L/K is
wildly ramified.

Fix a generator

σ ∈ G,
and for 0 ≤ j ≤ m let

G(j) ⊆ G
be the unique subgroup of order pm−j , i.e., G(j) = 〈σpj 〉 and

G = G(0) ) G(1) ) G(2) ) . . . .

From Corollary 1.33 and the structure of the subgroups of G we can conclude that
each subgroup G(j) ⊆ G equals a higher ramification subgroup of G. Hence, there
exist jumbs 0 < n0 < . . . < nm−1 with

G(0) = G0 = . . . = Gn0

G(1) = Gn0+1 = . . . = Gn1

. . .

G(j) = Gnj−1+1 = . . . = Gnj

. . .

G(m) = Gnm−1+1 = . . . .

We get

ϕL/K(n0) =
1

g0
(g1 + . . .+ gn0

) =
1

pm
n0p

m = n0,

ϕL/K(n1) = n0 +
1

g0

n1∑
t=n0+1

gi = n0 +
(n1 − n0)pm−1

pm
= n0 +

(n1 − n0)

p

and in general

ϕL/K(nj) = n0 +
(n1 − n0)

p
+ . . .+

(nj − nj−1)

pj

for 1 ≤ j ≤ m− 1. Thus, in the end we have to prove the congruences

nj ≡ nj−1 mod pj

for 1 ≤ j ≤ m− 1.
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Recall the function

iG : G→ Z≥0 ∪ {∞}, τ 7→ νL(τ(πL)− πL)

from Section 1.6. It has the decisive property that

iG(s) ≥ i+ 1 if and only if s ∈ Gi
for s ∈ G, i ≥ −1. We can conclude

G(j) ⊆ Gi

⇔σp
j

∈ Gi

⇔iG(σp
j

) ≥ i+ 1.

We get

nj + 1 = i(σp
j

)

for 0 ≤ j ≤ m− 1 as σp
j ∈ Gnj \Gnj+1. Hence, in order to finish the proof of the

Hasse-Arf theorem Theorem 1.40 it suffices to prove the congruences

i(σp
j−1

) ≡ i(σp
j

) mod (pj)

for 1 ≤ j ≤ m. For this we follow [Sen69] and consider the following slightly more
general situation. Let A be a complete discrete valuation ring with perfect residue
field k of characteristic p, fraction field K = Frac(A), normalized valuation νK and
let us fix a uniformizer π ∈ A. Let

σ : K → K

be a “wildly ramified” automorphism, i.e., σ is an automorphism of K preserving
A, and νK(σ(x)− x) > 1 for x ∈ A. Define

i(σ) := νK(σ(π)/π − 1) = νK(σ(π)− π)− 1 ∈ Z ∪ {∞}

The function σ 7→ i(σ) has the following important property.

Lemma 1.48. For n ∈ Z with p-adic valuation a we have

i(σn) = i(σp
a

).

Proof. Write n = pam with p - m. Then with τ := σp
a

we get

σn − 1 = (τ − 1)(τm−1 + . . .+ τ + 1)

in the polnyomial ring Z[σ]. As σ (and hence τ) is wildly ramified, τ acts trivially
on

(π)i/(π)i+1

for each i ≥ 0. Hence, (τm−1 + . . . + τ + 1) acts via multiplication by m on
(π)i/(π)i+1. As p - m we can conclude that (τm−1+. . .+τ+1) preserves valuations,
and thus that

i(σn) = νK((σn − 1)π)− 1 = νK((τ − 1)π)− 1 = i(τ)

as desired. �

Applying the following theorem in our previous setup with K = L and σ : L→ L
the chosen generator of G = Gal(L/K) ∼= Z/pm finishes the proof of the Hasse-Arf
Theorem 1.40 (and thereby of the local Kronecker-Weber Theorem 1.12).
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Theorem 1.49 ([Sen69, Theorem 1]). We have

i(σp
j−1

) ≡ i(σp
j

) mod pj

for each j ≥ 1.

It is possible that i(σp
j

) = ∞. In this case, ∞ is supposed to be equivalent to

each natural number. In other words, if i(σp
j

) =∞, then nothing has to be proven.

Proof. By induction on n ≥ 1 we prove that for any wildly ramified automorphism
τ : K → K

i(τp
j−1

) ≡ i(τp
j

) mod pj

for 1 ≤ j < n. If n = 1, then nothing has to be proven. Hence, assume that the
statement is wrong for some n ≥ 2 and σ, i.e.,

i(σp
n−1

) 6≡ i(σp
n

) mod pn.

Applying the induction hypothesis to σp we get

i(σp
n−1

) = i((σp)p
n−2

) ≡ i((σp)p
n−1

) = i(σp
n

) mod pn−1.

Set

s := i(σp
n−1

)− i(σp
n

) ∈ Z.
By Lemma 1.50 (applied to µ = s and σp) there exists an element z ∈ K such that

νK(z) = s, νK(σp(z)− z) = s+ i((σp)s).

By Lemma 1.48 i((σp)s) = i((σp)p
n−1

) because s has p-adic valuation n−1. Hence,

νK(σp(z)− z) = s+ i(σp
n

) = i(σp
n−1

).

Set

x := σp−1(z) + . . .+ σ(z) + z.

We have

σp−1 + . . .+ σ + 1 ≡ (σ − 1)p−1 mod p

in the polynomial ring Z[σ]. Hence, write

σp−1 + . . .+ σ + 1 = (σ − 1)p−1 + pf(σ)

with f(σ) ∈ Z[σ]. We can conclude

νK(x) ≥ min{νK((σ(z)− z)p−1, pf(σ)(z))} > νK(z)

as σ is wildly ramified and νK(p) > 0. Moreover,

νK(σ(x)− x) = νK(σp(z)− z) = i(σp
n−1

).

Write

x =

∞∑
µ=νK(x)

xµ

as in Lemma 1.50, and define

y := σ(x)− x, yµ := σ(xµ)− xµ.
Let νp : Z→ Z ∪ {∞} be the p-adic valuation and set

y1 :=
∑

νp(µ)<n

yµ,
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y2 :=
∑

νp(µ)≥n

yµ.

Consider a non-zero summand yµ in y2, in particuluar µ ∈ Z, µ ≥ νK(x) and
νp(µ) ≥ n. Then

νK(yµ) = µ+i(σµ)
Lemma 1.48

= µ+i(σp
ν
p(µ)) ≥ νK(x)+i(σp

n

) > s+i(σp
n

) = i(σp
n−1

)

by our construction of x and the fact that i(σp
νp(µ)

) ≥ i(σp
n

). In particular, each

summand of y2 has valuation > νK(y) = i(σp
n−1

). We can conclude

νK(y) = νK(y1).

The crucial point in the proof is the observation that the

νK(yµ) = µ+ i(σµ)

for µ ∈ Z, νp(µ) < n, xµ 6= 0 and i(σp
n−1

) are all pairwise distinct. Granting this,
the valuation of y1 must be distinct from y, which then finishes the proof. Therefore
assume that

µ+ i(σµ) = λ+ i(σλ)

for µ, λ ∈ Z with νp(µ), νp(λ) < n. If νp(µ) = νp(λ), then by Lemma 1.48 i(σµ) =
i(σλ), which then implies µ = λ. Hence, we may assume that νp(µ) > νp(λ). Then

νp(µ+ λ) = min{νp(µ), νp(λ)} = νp(λ).

By the induction hypothesis we know that

i(σp
j−1

) ≡ i(σp
j

) mod pj

for 1 ≤ j < n. As νp(λ) < νp(µ) < n we can conclude that

i(σµ) ≡ i(σλ) mod pνp(µ).

This implies that

νp(i(σ
µ)− i(σλ)) ≥ νp(µ) > νp(λ).

Therefore, i(σµ)− i(σλ) 6= λ−µ as desired. If νp(µ) < n and i(σp
n−1

) = µ+ i(σµ),
then

i(σµ) ≡ i(σp
n−1

) mod pn−1,

which implies pn−1 | µ, i.e., νp(µ) = n + 1. But then i(σp
n−1

= i(σµ) and thus
µ = 0, which is contradicting νp(µ) < n. Thus, the proof is finished. �

We used the following lemma in the proof of Theorem 1.49.

Lemma 1.50. For each µ ∈ Z there exists an element xµ ∈ K, such that νK(xµ) =
µ and νK(σ(xµ)− xµ) = µ+ i(σµ). Moreover, each x ∈ K can be written as

x =

∞∑
µ=νK(x)

xµ

with xµ for µ ≥ νK(x) being zero or satisfying νK(xµ) = µ and νK(σ(xµ)− xµ) =
µ+ i(σµ).
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Proof. Assume µ ≥ 0. Then set

xµ :=

µ−1∏
i=0

σi(π).

Then νK(xµ) = µ. Moreover,

νK(σ(xµ)− xµ) = νK(xµ) + νK(
σ(xµ)

xµ
− 1) = µ+ νK(

σ(xµ)

xµ
− 1)

and
σ(xµ)

xµ
=
σµ(π)

π
.

This implies

νK(
σ(xµ)

xµ
− 1) = νK(

σµ(π)

π
− 1) = i(σµ)

and therefore νK(σ(xµ) − xµ) = µ + i(σµ) as desired. If µ < 0 set xµ = 1
x−µ

with

the previously defined x−µ. Then νK(xµ) = µ and

νK(σ(xµ)− xµ)

=µ+ νK(
σ(xµ)

xµ
− 1)

=µ+ νK(
π

σ−µ(π)
− 1)

=µ+ νK(
σµ(π)

π
− 1)

=µ+ i(σµ),

which finishes the proof of the first assertion. For the last statement let x ∈ K and
let

[−] : k → A

be the Teichmüller lift, cf. [Tia, Proposition 8.3.5.]. Note that

σ([λ]) = [λ]

for each λ ∈ k as σ is wildly ramified. If xµ satisfies

νK(xµ) = µ, νK(σ(xµ)− xµ) = µ+ i(σµ),

then [λ]xµ is therefore zero or satisfies the same statements. Now it is clear by
successive approximation that desired expression for x exists. �

Exercise 1.51. Let A be a complete discrete valuation ring with perfect residue
field k and K := Frac(A) its fraction field.

(1) Let L/K be a totally ramified finite Galois extension with Galois groupG :=
Gal(L/K). Let f(X) ∈ A[X] be the minimal polynomial of a uniformizer
πL ∈ L over K. Show that

νL(f ′(πL)) =
∑
s6=1

iG(s) =

∞∑
i=0

(](Gi)− 1).
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(2) Assume that k is finite with q := ]k. Show that the Galois group of the
maximal tamely ramified extension of K (inside some fixed algebraic closure
of K) is isomorphic to the semidirekt product

Ẑ′ o Ẑ
with 1 ∈ Ẑ acting on Ẑ′ := lim←−

(n,q)=1

Z/n by multiplication with q.

1.10. Supplements on local class field theory. We mention several statements
that also fall in the realm of “local class field theory”. The first is the computation
of the Brauer group of a local field.

The (cohomological) Brauer group of a field K is defined as the second Galois
cohomology group

Br(K) = H2
cts(Gal(K/K),K×)

and it identifies with the (Azumaya) Brauer group of equivalence classes of central
simple algebras over K.

If K is a non-archimedean local field, then there exists an isomorphism

inv : Br(K) ∼= Q/Z,
cf. [Ser13, Chapter XII, §.3].

When discussing formal A-modules of height h ≥ 1 we will construct explicit
central division algebras Dh with inv(Dh) = 1/h.

Another topic which was left over is the independece of the morphism

r := rπ : K× → Gal(Kab/K)

in Section 1.5. We may come back to this question after discussing deformation
theory of formal A-modules.

We did not show (and don’t plan to do so) that for a finite abelian extension
L/K the kernel of the composition

r : K× → Gal(Kπ/K)� Gal(L/K)

is given by the norm subgroup NL/K(L×) ⊆ K×. We won’t discuss functoriality of
r if K changes either.
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2. Lubin-Tate spaces

We want to study formal A-modules and in particular formal group laws further.
It is clear that the definition of a formal A-module Definition 1.24 generalizes to
any ring A, i.e., if A is any ring, R an A-algebra, then a (commutative) formal
group law

F ∈ R[[X,Y ]]

together with a ring homomorphism [−]F : A → EndFGL(R)(F ) can be called a
formal A-module if

[a]F (X) ≡ aX mod (X)2

for any a ∈ A. Let us denote by

FGLA(R)

the category of formal A-modules (with the natural choice for morphisms, cf. Sec-
tion 1.4). Clearly each morphism ϕ : R → S of A-algebras induces a functor,
denoted by ϕ∗ or −⊗̂RS,

FGLA(R)→ FGLA(S),

by applying ϕ to the coefficients of F ∈ R[[X,Y ]] and [a]F ∈ R[[X]], a ∈ A.

The typical example of a formal A-module is the formal additive A-module Ĝa
given by

F (X,Y ) := X + Y, [a]F (X) := aX, a ∈ A,
and for a general A each formal A-module will be isomorphic to this, e.g., if A
contains an infinite field.7 Therefore we will mostly assume that A = Z, where
formal A-modules are just formal group laws, or A a (not necessarily complete)
discrete valuation ring with finite residue field, which captures localisations Z(p)

or rings of integers in (non-archimedean) local fields. It may be possible that
the results presented here admit suitable generalizations to the case that A is a
Dedeking ring with finite residue fields at maximal ideals, but we don’t pursue this
question here.

We leave the following as an exercise.

Exercise 2.1. Let A be any ring, R an A-algebra and a ∈ A.

(1) If a is invertible in R, then the category FGLA(R) is equivalent to the
category FGLA[1/a](R) of formal A[1/a]-modules.

(2) If a is nilpotent in R, then the category FGLA(R) is equivalent to the

category FGLÂa of formal Âa-modules, with Âa the (a)-adic completion of
A.

Thus depending on R we may change A without any trouble. Let us note that
formal A-module laws exist in abundance and the problem is to classify them up
to isomorphism. More formally, for R ∈ AlgA set

G(R) := {g(X) ∈ R[[X]] | f(0) = 0, f ′(0) ∈ R×}.

For any g ∈ G(R) the substitution

g : R[[X]]→ R[[X]], X 7→ g(X)

7This will implicitly be proven in this chapter.
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defines an R-algebra isomorphism (this is implicit in Exercise 2.1). Let us write
g−1 for its inverse, i.e., g−1(X) ∈ G(R) is the unique power series satisfying

g−1(g(X)) = X, g(g−1(X)) = X.

On checks that the set G(R) is naturally a group for the binary operation

g ◦ h := g(h(X)).

Moreover, it acts on FGLA(R): Given any formal A-module (law) F ∈ R[[X,Y ]]
we obtain the new formal A-module (law)

F g := g−1(F (g(X), g(Y ))) ∈ R[[X,Y ]]

with formal multiplication

[a]F g (X) := g−1([a]F (g(X)) ∈ R[[X]], a ∈ A.
By construction the power series g(X) ∈ R[[X]] defines an isomorphism

g : F g
'−→ F

of formal A-modules. The classification of formal A-modules amounts therefore to
understanding the G(R)-orbits on FGLA(R).8

For the rest of this chapter we will follow (at least) [HG94], [Dri74] and lecture
notes of Fargues [Far] resp. Lurie [Lur10].

As a start, we discuss the height of a formal A-module.

2.1. The height of a formal A-module. Assume that A is a (not necessarily
complete) discrete valuation ring with uniformizer π ∈ A and finite residue field
k = A/π of characteristic p and cardinality q = pc.

Assume that R is an A-algebra with πR = 0 and that

F ∈ R[[X,Y ]]

is a formal A-module, whose multiplication we denote by

ι : A→ EndFGL(R)(F )

or
[a] = [a]F = ι(a) ∈ R[[X]].

Let us note that although πR = 0 we need not have ι(π) = 0. All we know is that

ι(π)(X) ≡ πX ≡ 0 mod (X)2.

In order to state the next lemma we have to discuss the Frobenius twists of formal
A-modules. Let

Frobp : R→ R, r 7→ rp

be the p-Frobenius of R and

Frobq = Frobcp : R→ R, r 7→ rq

be its q-Frobenius for q = pc. Note that Frobq is a morphism of A-algebras but

Frobp not if q 6= p. Applying for b ≥ 1 the morphism Frobbp to the coefficients of a
formal A-module F over R and its A-multiplication ι(a), a ∈ A, we obtain a formal
group (the “b-th Frobenius twist of F”)

F (pb) := Frobbp∗F,

8The functors R 7→ FGLA(R), R 7→ G(R) are corepresentable (the latter by R[r±1 , r2, r3, . . .]).

Therefore the better aim should be to understand the stack quotient [FGLA/G].
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which is equipped with the ring morphism

ι(p
b) : A→ EndFGL(R)(F

(pb))

by raising the coefficients of [a]F (X), a ∈ A, to their pb-th power. If c | b the pair

(F (pb), ι(p
b)) is again a formal A-module. Indeed,

ι(p
b)(a)(X) ≡ ap

b

X ≡ aX mod (X)2

for a ∈ A in this case. The map (“the b-the Frobenius of F”)

ϕF,pb : F → F (pb), X 7→ Xpb

is a morphism of formal groups and A-linear with respect to ι, ι(p
b). Indeed,

(F (X,Y ))p
b

= F (pb)(X(pb), Y (pb))

as follows from the fact that Frobbp : R[[X,Y ]]→ R[[X,Y ]] is a ring homomorphism.

If c | b, then ϕbF is even a morphism of formal A-modules.
In the following we let

f ′ ∈ R[[X]]

be the formal derivative of a power series f ∈ R[[X]].

Lemma 2.2 ([HG94, Lemma 4.1.], [Far, 1.8.2.]). Let f : F1 → F2 be a morphism
of formal A-modules over k′. If f ′(0) = 0, then

f(X) = g ◦ ϕF (q)(X) = g(Xq)

for some morphism g : F (q) → F . In particular, if R = k′ is a field extension of k,

then either f = 0 or there exist a unique h ∈ Z≥0, and a morphism g : F q
h

1 → F2

of formal A-modules such that

f(X) = g ◦ ϕ
F (qh)(X) = g(Xqh)

and g′(0) 6= 0.

In the case that R = k′ is a field we call h the height of the homomorphism f
and write ht(f) for it. By convention we set ht(0) := ∞. Clearly, if f1 : F1 → F2

is of height h1 and f2 : F2 → F3 of height h2, then f2 ◦ f1 is of height h1 + h2.
Moreover, a homomorphism is of height 0 if and only if it is an isomorphism.

Proof. By Exercise 2.1 we may assume that A is complete. We first prove that
f ′ = 0. Let us take the derivative of

f(F1(X,Y )) = F2(f(X), f(Y ))

with respect to X. This yields

f ′(F1(X,Y ))
∂F1

∂X
(X,Y ) =

∂F2

∂X
(f(X), f(Y ))f ′(X).

and thus by setting X = 0 (using F1(0, Y ) = Y, f(0) = 0, f ′(0) = 0)

f ′(Y )
∂F1

∂X
(0, Y ) =

∂F2

∂X
(0, f(Y ))f ′(0) = 0.

But
∂F1

∂X
(0, Y ) = 1 mod (X,Y )
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and thus ∂F1

∂X (0, Y ) ∈ R[[X]]× is a unit, which implies that

f ′(Y ) = 0.

This implies that we can write

f(X) = g1(Xp)

with g1 ∈ R[[X]] ∈ k′ because p = 0 ∈ R and each n ∈ Z prime to p is invertible in
R. We claim that

(8) g1(F
(p)
1 (X,Y )) = F2(g1(X), g1(Y )) ∈ R[[X,Y ]],

i.e., that g1 : F
(p)
1 → F2 is a morphism of formal groups. But the R-algebra mor-

phism

R[[X,Y ]]→ R[[X,Y ]], X, Y 7→ Xp, Y p

is injective and maps (8) to

g1(F
(p)
1 (Xp, Y p)) = g1((F1(X,Y ))p) = f(F1(X,Y ))

resp.

F2(g1(Xp), g1(Y p)) = F2(f(X), f(Y )).

As f : F1 → F2 is a morphism, we can conclude that (8) holds. Similarly, one checks
that morphism g1 is A-linear, i.e.,

g1(ι
(p)
F1

(a)(X)) = ιF2
(a)(g1(X))

for a ∈ A. Write q = pc with c ≥ 1. Iterating the above argument with f replaced
by g1, it suffices to show the following claim. If for 1 ≤ b < c there exists an
A-linear morphism

g : F
(pb)
1 → F2

such that

f(X) = g ◦ ϕF,pb(X) = g(X(pb)),

then g′(0) = 0. Write

f(X) = dXpb mod (Xpb+1)

with d = g′(0). The ring A contains a primitive q − 1-th root of unity ζ ∈ A. By
A-linearity of f we know that

[ζ]F2
(f(X)) = f([ζ]F1

(X)).

Now looking at the coefficients of Xpb on both sides we find

ζd = ζp
b

d.

As b < c the element 1− ζpb−1 ∈ A is a unit. This implies d = 0 as desired. �

We can now define the height of a formal A-module.

Definition 2.3. Let k′ be a field extension of k and let F be a formal A-module
over k′. Then we define the height h of F as the height of the endomorphism
[π]F : F → F .
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As the height can also be defined as the largest integer such that [π]F : F → F

factors over F (qh) we see that the height does not depend on the choice of the
uniformizer π. By construction the Lubin-Tate formal A-module in Section 1.3 is
of height 1. The formal A-module Ĝa associated to

F (X,Y ) = X + Y ∈ k[[X,Y ]]

and

[a](X) = aX, a ∈ A,
is of height ∞ as π ≡ 0 ∈ k.

Let us now produce examples of formal A-modules of height h ∈ Z≥1.

Lemma 2.4. For 1 ≤ h < ∞ there exists a unique formal A-module Fh ∈
A[[X,Y ]] with [π]Fh(X) = Xqh + πX. Moreover, Fh⊗̂Ak is of height h and
A ∼= EndFGLA(A)(Fh).

Note that we could replace Xqh + πX here by any other f(X) ∈ A[[X,Y ]] such

that f(X) ≡ πX mod (X)2 and f(X) ≡ Xqh mod (π).

Proof. Using Remark 1.15 all statements follow from Lemma 1.14. �

In particular, over k = A/mA there exists formal A-modules of arbitrary height
h ≥ 1, and then by base change over any field extension of k. The height is an
interesting invariant of formal A-modules over fields.

Theorem 2.5. Assume that k′/k is a separably closed field. Then two formal
A-modules F1, F2 ∈ k′[[X,Y ]] are isomorphic if and only if they have the same
height.

The “only if” statement is easy. More generally, there do not exist any non-
zero morphisms of formal A-modules of different height as the height is additive
under composition. We will prove this theorem in Theorem 2.29. For mention the
following applications of heights.

Exercise 2.6. Assume that A is complete and let h ∈ Z≥1. Let Fh ∈ k[[X,Y ]] be
the reduction of the formal A-module Fh from Lemma 2.4. Show that

EndFGLA(k)(Fh) ∼= A[Π]/(Πh − π)

with Π the endomorphism Xq of Fh.

2.2. Lubin-Tate spaces via formal group laws. Let us now give the definition
of Lubin-Tate spaces. Let A be a complete discrete valuation ring with finite residue
field k of characteristic p and cardinality q. Fix a uniformizer π ∈ A. We let

NilpA

be the category of A-algebras R such that π is nilpotent in R. Thus NilpA is the
“union” of the categories of A/πn-algebras for n ≥ 0.

Let us fix a formal A-module Fh ∈ k[[X,Y ]] of height h ∈ Z≥1, e.g., the reduction
of the Fh constructed in Lemma 2.4 with

[π]Fh(X) = Xqh ∈ k[[X]].
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Definition 2.7. Let R ∈ NilpA, and f : F → G a morphism of formal A-modules
given by the power series f(X) ∈ R[[X]]. Then f is called a ?-isomorphism if there
exists a nilpotent ideal I ⊆ R such that

f(X) ≡ X mod I,

i.e., if f reduces to the identity modulo I ⊆ R.

Note that f ′(0) ∈ R× as I is nilpotent. In particular, each ?-isomorphism
is an isomorphism of formal A-module( law)s. Moreover, the existence of a ?-
isomorphism f : F → G forces F ≡ G mod I.

We can now define the Lubin-Tate space (for height h) as the space of ?-
deformations of Fh.

Definition 2.8. For R ∈ NilpA we set

MFh(R)

as the set of ?-isomorphism classes of formal A-module laws F ∈ R[[X,Y ]] such
that F ≡ Fh ∈ R/I[[X,Y ]] for some nilpotent ideal I ⊆ R with π ∈ I. The functor

MFh : NilpA → (Sets)

is called the Lubin-Tate space (for Fh).

Let us call a formal A-module F ∈ R[[X,Y ]] such that F ≡ Fh mod I for some
finitely generated nilpotent ideal I ⊆ R containing π a ?-deformation of Fh over R.

The next aim of this course is to prove the following (version of a) theorem of
Lubin and Tate, cf. [LT66, Theorem 3.1.], [HG94, Proposition 12.10].

Theorem 2.9 (Representability of Lubin-Tate space). For h ∈ Z≥1 there exists
an isomorphism

Spf(A[[X1, . . . , Xh−1]]) ∼=MFh ,

where Spf(A[[X1, . . . , Xh−1]]) denotes the functor

NilpA → (Sets), R 7→ HomA,cts(A[[X1, . . . , Xh−1]], R)

with R viewed as a discrete A-algebra.

In particular, we can construct many ?-deformations over an A-algebra R ∈
NilpA. From another viewpoint Theorem 2.9 equips the Spf(A[[X1, . . . , Xh−1]])
with more structure, namely a (pro-)universal ?-deformation of Fh. This additional
structure is highly interesting as it leads to the Gross-Hopkins period morphism and
the higher level Lubin-Tate spaces.

The following lemma is a critical place where the assumption that h ∈ Z≥1 is
used.

Lemma 2.10. Assume h ∈ Z≥1. Let R ∈ NilpA, I ⊆ R a nilpotent ideal and let
f : F1 → F2 be a morphism of formal A-modules over R. If F is a ?-deformation
of Fh with h ∈ Z≥1 and f ≡ 0 mod I, then f = 0.

Proof. Assume In = 0. Considering the surjections

R = R/In → R/In−1 → . . .→ R/I

we can reduce to the case that I2 = 0. Let J ⊆ R be a nilpotent ideal containing
π such that F ≡ Fh mod I. Using the filtration

0 = J iI ⊆ . . . ⊆ J iI ⊆ . . . ⊆ JI ⊆ I



LECTURE NOTES ON LUBIN-TATE SPACES 51

for some i ≥ 0, we may assume that JI = 0. In particular, πI = 0. By assumption
the power series

f(X) ∈ R[[X]]

has coefficients in I. Write

[π]F1 = aXqh + h(X)

with a ∈ R× and h(X) ∈ R[[X]] having coefficients in J = (π, J) (this is possible
by our assumption that F1 ≡ Fh mod J). Because 0 = πI = JI we can conclude
that

f([π]F1(X)) = f(aXqh).

On the other hand,

f([π]F1
(X)) = [π]F2

(f(X)) = πf(X) = 0

because I2 = πI = 0 and [π]F2(X) ≡ πX mod (X)2. Because

R[[X]]→ R[[X]], X 7→ aXqh

is injective we can conclude that f = 0 as desired. �

Lemma 2.10 implies that each morphism

f : F → Ĝa
of formal A-modules over R is zero if F is a ?-deformation of Fh with h ∈ Z≥1.
Indeed, by Lemma 2.10 we may replace R by R/(π, J), and then use that

f([π]Fh(X)) = f(Xqh)

while
[π]Ĝa(f(X)) = πf(X) = 0.

Another corollary of Lemma 2.10 is that there exists at most one ?-isomorphism
between two ?-deformations of Fh.

If R ∈ NilpA is local artinian, then its maximal ideal mR ⊆ R is nilpotent. From
Lemma 2.10 we obtain that the sets of isomorphism classes of ?-deformations over
R identifies with

{F ∈ R[[X,Y ]] | F = Fh mod mR}/ ',
where two such F1, F2 are called equivalent if there exists an isomorphism f : F1 →
F2 reducing to the identity modulo mR.

This explains the link between Definition 2.8 and the viewpoint taken in the
references [LT66], [HG94] and [Far]. We choose this different presentation as it
closer to the definition of a Rapoport-Zink space.
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2.3. Lazard’s theorem for formal A-modules. The proof of Theorem 2.9 re-
quires a detailed understanding of formal A-modules. Let us assume that A is a
(not necessarily complete) discrete valuation ring with finite residue field as before
or A = Z.

Let R be an A-algebra. We will analyze formal A-modules

F ∈ R[[X,Y ]], [a]F (X) ∈ R[[X]], a ∈ A,
by approximating them modulo powers of (X,Y ) ⊆ R[[X,Y ]].

Definition 2.11. Let n ≥ 2. An n-truncated (commutative, one-dimensional)
formal group law is an element F ∈ R[[X,Y ]]/(X,Y )n such that

(1) F (X, 0) = X,F (0, Y ) = Y ,
(2) F (X,F (Y,Z)) = F (F (X,Y ), Z) ∈ R[[X,Y, Z]]/(X,Y, Z)n

(3) F (X,Y ) = F (Y,X) ∈ R[[X,Y ]]/(X,Y )n.

Let FGL≤n(R) be the category of n-truncated formal group laws (with the natural
notion of morphisms, cf. Definition 1.24). An n-truncated formal group law F
together with a ring homomorphism

ιF : A→ EndFGL≤n(R)(F ), a 7→ [a]F

is called an n-truncated formal A-module if [a]F (X) = aX mod (X)2 for all a ∈ A.
We let FGL≤n,A(R) be the category o n-truncated formal A-modules (with mor-
phisms the A-linear morphisms of n-truncated formal group laws).

Here as for the case of formal group laws

FGL≤n(R)

denotes the category of n-truncated formal group laws, which is naturally enriched
in abelian groups. It is clear that modding out the degree n part everywhere yields
a functor

FGL≤n+1,A(R)→ FGL≤n,A(R)

from the category of n + 1-truncated formal A-modules to n-truncated formal A-
modules for any A-algebra R. Moreover, the category of formal A-modules can be
reconstructed via

FGLA(R) ∼= lim←−
n

FGL≤n,A(R).

A key ingredient in understanding formal A-module laws is to understand the
fibers of

FGL≤n+1,A(R)→ FGL≤n,A(R).

This is partly answered by the following lemma, which is a combination of [Laz55,
Proposition 1] and [Dri74, §1].

Lemma 2.12. Let n ≥ 2. Let

F1 ∈ R[[X,Y ]]/(X,Y )n+1, [a]F1
∈ R[[X]]/(X)n+1,

be an (n+ 1)-truncated formal A-module and let

F2 ∈ R[[X,Y ]]/(X,Y )n+1, [a]F2
(X) ∈ R[[X]]/(X)n+1, a ∈ A,

be elements such that F1 ≡ F2 mod (X,Y )n, [a]F1
≡ [a]F2

mod (X)n for a ∈ A.
Then F2 is an (n + 1)-truncated formal A-module with multiplication [−]F2

if and
only if for

Γ(X,Y ) := F2(X,Y )− F1(X,Y )
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and
[a]F2(X)− [a]F1(X) = h(a)Xn, a ∈ A,

the following equations are satisfied:

(1) Γ(X, 0) = 0, Γ(0, Y ) = 0,
(2) Γ(Y,X) + Γ(X,Y + Z) = Γ(X,Y ) + Γ(X + Y,Z),
(3) Γ(X,Y ) = Γ(Y,X),
(4) h(a)(Xn + Y n) + anΓ(X,Y ) = h(a)(X + Y )n + aΓ(X,Y ),
(5) h(a+ b)Xn = h(a)Xn + h(b)Xn + Γ(aX, bY ),
(6) h(ab) = ah(b) + h(a)bn

for a, b ∈ A.

Proof. This follows directly by plugging in the definitions and using repeatedly that
all terms of degree ≥ n+ 1 vanish. For example,

F2(X,Y ) ≡ F2(Y,X)

if and only if Γ(X,Y ) ≡ Γ(Y,X) as F1(X,Y ) ≡ F1(Y,X). As another example we
can calculate

F2([a]2(X), [a]2(Y ))

≡F1([a]F1(X), [a]F1(Y )) + anΓ(X,Y ) + h(a)(Xn + Y n) mod (X,Y )n+1

while
[a]F2(F2(X,Y ))

≡[a]F1
(F1(X,Y )) + aΓ(X,Y ) + h(a)(X + Y )n mod (X,Y )n+1

for a ∈ A. The required equations

[a+ b]F2
(X) = F2([a]F2

(X), [b]F2
(X))

and
[ab]F2

(X) = [a]F2
([b]F2

(X))

for a, b ∈ A yield the other conditions. �

Note that in these formulas we did not use the multiplication in R, only its
A-linear structure. If M is any A-module and n ≥ 2, then we therefore set

Dn,A(M)

as the A-module of elements mi ∈ M, 0 < i < n, h(a) ∈ M,a ∈ A, such that with
the formal expression

Γ(X,Y ) :=
∑

0<i<n

miX
iY n−i

the equations in Lemma 2.12 are satisfied. It is easy to write down elements in
Dn,A(M). Set

Bn(X,Y ) := (X + Y )n −Xn − Y n ∈ Z[X,Y ],

and let
γn ∈ Dn,A(A)

be the element given by the collection

{Γ(X,Y ) := Bn(X,Y ), h(a) := (an − a), a ∈ A}.
It is easily checked that γn is well-defined, i.e., the equations in Lemma 2.12 are
satisfied. For any m ∈M we therefore obtain the element

γn ·m ∈ Dn,A(M).
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The following lemma is the crucial point in the proof of Lazard’s theorem. For
A = Z it is [Laz55, Lemme 3] and for A a discrete valuation ring with finite residue
field it will be extracted from [Dri74, Proposition 1.3.]. We will give the proof of
Lemma 2.13 in Section 2.4.

Lemma 2.13 (Lazard, Drinfeld). Let n ≥ 2.

(1) Assume A = Z. If n is not a prime power, then set γdiv,n = γn ∈ Dn,A(A).
If n = ph is a prime power, then there exists a unique γdiv,n ∈ Dn,A(A) such
that pγdiv,n = γn. In both cases, the element γdiv,n ∈ Dn,A(A) represents
the functor Dn,A(−).

(2) Assume that A is a discrete valuation ring with finite residue field k having
q elements. Let π ∈ A be a uniformizer. If n is not a power of q set
γdiv,n := γn ∈ Dn,A(A). If n is a power of q, then there exists a unique
element γdiv,n ∈ Dn,A(A) such that πγdiv,n = γn. In both cases, the element
γdiv,n ∈ Dn,A(A) represents the functor Dn,A(−).

In other words, if M is an arbitrary A-module and γ ∈ Dn,A(M), then there
exists a unique m ∈M , such that

γ = γdiv,n ·m.
By Lemma 2.12 we can conclude that if

F ∈ R[[X,Y ]], [a]F (X), a ∈ A,
is an n+ 1-truncated formal A-module, then the n+ 1-truncated formal A-modules
agreeing with F modulo (X,Y )n differ from F, [a]F by a multiple (in R) of the
generator γn,div ∈ Dn,A(A).

Let us make this explicit for small n ≥ 2 if A = Z. For this let dn be the greatest
common divisor of the coefficients of Bn(X,Y ). When proving Lemma 2.13 we will
prove that

dn =

{
1, if n is not a prime power,

p, if n is a power of the prime p.

For A = Z it follows from Lemma 2.13 that the canonical element γdiv,n is given by

Cn(X,Y ) :=
1

dn
Bn(X,Y ).

By definition, X + Y ∈ R[[X,Y ]]/(X,Y )2 is the only 2-truncated formal group
law. It is easily checked that the 3-truncated formal group laws are exactly the

F (X,Y ) = X + Y + a1XY

for some a1 ∈ R where

XY = C2(X,Y ),

and that these define actual formal group laws (and not just truncated ones). This
implies that the 4-truncated formal group laws are exactly the

F (X,Y ) = X + Y + a1XY + a2(X2Y +XY 2)

with a1, a2 ∈ R where

X2Y +XY 2 = C3(X,Y ).

It is not true that each n+ 1-truncated (commutative) formal group is of the form

X + Y + a1C2(X,Y ) + a2C3(X,Y ) + . . .+ an−1Cn(X,Y )
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for some a1, a2, . . . , an ∈ R. Namely, we leave as an exercise to show that this does
not happen for the general 5-truncated formal group law.

We are now heading to Lazard’s theorem. Let

F = X+Y +

∞∑
i,j=1

ci,jX
iY j ∈ R[[X,Y ]], [a]F (X) = aX+

∞∑
i=2

da,iX
i ∈ R[[X]], a ∈ A,

be a collection of power series. Then F is a formal A-module with multiplication
by the [a]F , a ∈ A, if and only if certain equations in the ci,j , i, j ≥ 1, dl,a, l ≥ 2,
are satisfied. For example, ci,j = cj,i for i, j ≥ 1. If

I ⊆ A[ci,j , dl,a | i, j ≥ 1, l ≥ 2, a ∈ A]

denotes the ideal generated by these equations, then the ring

ΛA := A[ci,j , dl,a | i, j ≥ 1, l ≥ 2, a ∈ A]/I

carries the natural formal A-module group

Funiv(X,Y ) = X + Y +

∞∑
i,j=1

ci,jX
iY j ∈ Λ[[X,Y ]]

with multiplication

[a]Funiv = aX +

∞∑
i=2

dl,aX
i, a ∈ A,

and for any A-algebra R the map

Hom(AlgA)(ΛA, R)→ ob(FGLA(R)), (f : Λ→ R) 7→ f∗Funiv

is a bijection, where ob(−) denotes the objects in a category. In other words, the
ring ΛA (together with Funiv) represents the functor of formal A-module laws.

Our aim is the proof of the following fundamental theorem of Lazard, cf. [Laz55,
Théoème II] and [Dri74, Proposition 1.4.].

Theorem 2.14 (Lazard, Drinfeld). There exists an isomorphism ΛA ∼= A[t1, t2, . . .].

Of course, we want to produce a (more or less) explicit isomorphism. The struc-
ture of proof for Theorem 2.14 is a bit complicated. Namely, we will simultaneously
prove

(1) over Rn := A[t1, . . . , tn−2] exists an n-truncated formal A-module, which
represents the functor of n-truncated formal A-modules,

(2) each n-truncated formal A-module over an R-algebra can be extended to
an n+ 1-truncated formal A-module,

(3) if K = Frac(A) and R is a K-algebra, then each formal A-module is iso-

morphic to the additive formal A-module Ĝa,R.

Set

Rn,K := Rn ⊗A K ∼= K[t1, . . . , tn−2]

and, if A is a complete discrete valuation ring with finite residue field, fix a uni-
formizer π ∈ A. By Lemma 2.13 we get generators

γdiv,n ∈ Dn,A(A)

corresponding to data Γdiv,n(X,Y ), hdiv,n(a), a ∈ A, satisfying the equations in
Lemma 2.12. A first application of Lemma 2.13 is the following proposition.
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Proposition 2.15 ([Laz55, Proposition 3] if A = Z). There exists sequences

Fn(X,Y ) ∈ Rn[[X,Y ]], [a]Fn(X) ∈ Rn[[X]], n ≥ 2,

and ϕn(X) ∈ Rn,K [[X]], n ≥ 2, such that

(1) Fn(X,Y ) mod (X,Y )n is an n-truncated formal A-module with multiplica-
tion by the [a]Fn(X), a ∈ A,

(2) ϕn(Fn(X,Y )) ≡ ϕn(X) + ϕn(Y ) in Rn,K [[X,Y ]]/(X,Y )n,
(3) ϕn([a]Fn(X)) ≡ aϕn(X) in Rn,K [[X,Y ]]/(X,Y )n,
(4) Fn+1(X,Y ) ≡ Fn(X,Y ) mod (X,Y )n,
(5) ϕn+1(X) ≡ ϕn(X) mod (X)n,
(6) Fn(X,Y )− tn−2Γdiv,n−1(X,Y ) ∈ Rn−1[[X,Y ]] if n ≥ 3,
(7) [a]Fn(X)− tn−2hdiv,n−1(a)Xn−1 ∈ Rn−1[[X,Y ]] if n ≥ 3.

The universal formal A-module over A[t1, t2, . . .] will be given by

Funiv := lim−→
n

Fn ∈ A[t1, t2, . . .][[X,Y ]],

with multiplication

[a]Funiv(X) := lim−→
n

[a]Fn(X) ∈ A[t1, t2, . . .][[X,Y ]], a ∈ A,

and ϕ := lim−→
n

ϕn will define an isomorphism

Funiv⊗̂AK ∼= Ĝa,K[t1,t2,...]

of formal A-modules.

Proof. We can set

F2(X,Y ) = X + Y, [a]F2
(X) = aX,ϕ2(X) = X.

Thus we may assume that we have constructed Fn, [a]Fn , a ∈ A,ϕn with the desired
properties and that they are polynomials of degree < n. Set

G(X,Y ) = ϕ−1
n (ϕn(X) + ϕn(Y )) ∈ Rn,K [[X,Y ]]

and
[a]G(X) := ϕ−1

n (aϕn(X)), a ∈ A,
(this makes sense as ϕn(X) = X + . . . ∈ Rn,K [[X,Y ]]). Then G is a formal A-
module in Rn,K [[X,Y ]] and

G(X,Y ) ≡ Fn(X,Y ) ∈ Rn,K [[X,Y ]]/(X,Y )n.

Let
Γ(X,Y ) ∈ Rn,K , h(a)Xn, a ∈ A,

be the degree n-part of G(X,Y ) and [a]G(X), i.e.,

G(X,Y ) ≡ Fn(X,Y ) + Γ(X,Y ) ∈ Rn,K [[X,Y ]]/(X,Y )n+1

and
[a]G(X) ≡ [a]Fn(X) + h(a)Xn ∈ Rn,K [[X,Y ]]/(X,Y )n+1.

As in Lemma 2.12 consider

(1) E1 := Γ(Y,X) + Γ(X,Y + Z)− Γ(X,Y )− Γ(X + Y,Z),
(2) E2 := h(a)(Xn + Y n) + anΓ(X,Y )− h(a)(X + Y )n − aΓ(X,Y ),
(3) E3 := h(a+ b)Xn − h(a)Xn − h(b)Xn − Γ(aX, bY ),
(4) E4 := h(ab)− ah(b)− h(a)bn
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for a, b ∈ A. As G(X,Y ) is a formal A-module with multiplication by [a]G(X) and
Fn(X,Y ) ∈ Rn[[X,Y ]], [a]Fn(X) ∈ Rn[[X]], a ∈ A, all the polynomials E1, . . . , E4

have coefficients in Rn. For example,

0 = G(X,G(Y,Z))−G(G(X,Y ), Z)

implies that

E1 = Fn(Fn(X,Y ), Z)− Fn(X,Fn(Y, Z))

has coefficients in Rn, while

0 = [a]G(G(X,Y ))−G([a]G(X), [a]G(Y ))

implies that

E2 = Fn([a]Fn(X), [a]Fn(Y ))− [a]Fn(Fn(X,Y ))

has coefficients in Rn. As ϕn has only finitely many denominators modulo (X)n+1,
there exists an m ∈ A such that mΓ(X,Y ),mh(a)Xn, a ∈ A, have coefficients in
Rn (and not Rn,K).

This implies that

mEi ∈ mRn[[X,Y, Z]],

for i = 1, . . . , 4, i.e., that

mEi ≡ 0 mod m

for i = 1, . . . , 4. Set

Γ′(X,Y ) := mΓ(X,Y )

and

h′(a) := mh(a), a ∈ A.
We can conclude that the mod m residue classes of Γ′(X,Y ), h′(a), a ∈ A, define
an element of

Dn,A(Rn/m)

as mE1 = . . .mE4 ≡ 0 mod m. By Lemma 2.13 we find some r ∈ Rn (unique
modulo m), a homogeneous polynomial

Γ′′(X,Y ) ∈ Rn[[X,Y ]]

of degree n, and

h′′(a) ∈ Rn, a ∈ A,
such that

Γ′(X,Y ) = rΓdiv,n(X,Y ) +mΓ′′(X,Y )

and

h′(a) = rhdiv,n(a) +mh′′(a), a ∈ A.
Now define

Fn+1(X,Y ) = Fn(X,Y ) + Γ′′(X,Y ) + tn−1Γdiv,n(X,Y ) ∈ Rn+1[[X,Y ]],

[a]Fn+1
(X) = [a]Fn + h′′(a)Xn + tn−1hdiv,n(a)Xn, a ∈ A.

We have to find some element an ∈ Rn,K such that

ϕn+1(X) = ϕn(X) + anX
n ∈ Rn+1,K [[X]]

satisfies
ϕn+1(Fn+1(X,Y )) ≡ ϕn+1(X) + ϕn+1(Y ) ∈ Rn+1,K [[X]],

ϕn+1([a]Fn+1
(X)) = aϕn+1(X), a ∈ A
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(these equations imply that Fn+1(X,Y ) is an n + 1-truncated formal A-module
with multiplication by the [a]Fn+1 , a ∈ A.). We calculate

ϕn+1(Fn+1(X,Y ))

≡ϕn(Fn+1(X,Y )) + an(X + Y )n

≡ϕn(Fn(X,Y ) + Γ′′(X,Y ) + tn−1Γdiv,n(X,Y )) + an(X + Y )n

≡ϕn(Fn(X,Y )) + Γ′′(X,Y ) + tn−1Γdiv,n(X,Y ) + an(X + Y )n

≡ϕn(X) + ϕn(Y )− Γ(X,Y ) + Γ′′(X,Y ) + tn−1Γdiv,n(X,Y ) + an(X + Y )n

≡ϕn(X) + ϕn(Y )− r

m
Γdiv,n(X,Y ) + tn−1Γdiv,n(X,Y ) + an(X + Y )n

in Rn+1,K [[X,Y ]]/(X,Y )n+1, while

ϕn+1(X) + ϕn+1(Y )

≡ϕn(X) + ϕn(Y ) + anX
n + anY

n.

We therefore get the requirement

an((X + Y )n −Xn − Y n) = anBn(X,Y ) = (
r

m
− tn−1)Γdiv,n.

Moreover, we calculate

ϕn+1([a]Fn+1(X))

≡ϕn([a]Fn+1
) + ana

nXn

≡ϕn([a]Fn(X) + h′′(a)Xn + tn−1hdiv,n(a)Xn) + ana
nXn

≡ϕn([a]Fn(X)) + h′′(a)Xn + tn−1hdiv,n(a)Xn + ana
nXn

≡aϕn(X)− h(a)Xn + h′′(a)Xn + tn−1hdiv,n(a)Xn + ana
nXn

≡aϕn(X)− r

m
hdiv,n(a)Xn + tn−1hdiv,n(a)Xn + ana

nXn

and
aϕn+1(X) ≡ aϕn(X) + aanX

n

for a ∈ A. Thus we get the additional equations

(an − a)an = (
r

m
− tn−1)hdiv,n(a)

for a ∈ A. By Lemma 2.13 we see that there exists a unique choice for an ∈
Rn,K . �

Let us fix sequences Fn, [a]Fn , a ∈ A,ϕn as in Proposition 2.15 (they are not
unique as the r ∈ Rn in the proof of Proposition 2.15 is only unique modulo m).
We now check that the Fn ∈ Rn[[X,Y ]] with multiplication [a]Fn(X), a ∈ A, are in
fact universal n-truncated formalA-module. By the Yoneda lemma this n-truncated
formal A-module defines a natural transformation

ηn : Hom(AlgA)(Rn,−)→ FGL≤n,A(−)

and Proposition 2.15 implies that the diagram

Hom(AlgA)(Rn+1,−) //

ηn

��

Hom(AlgA)(Rn,−)

η

��
FGL≤n+1,A(−) // FGL≤n,A(−)
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commutes as Fn+1 ≡ Fn mod (X,Y )n, [a]Fn+1
(X) ≡ [a]Fn(X) mod (X,Y )n.

Theorem 2.16 (Lazard’s theorem for n-truncated formal A-modules). For n ≥ 2
the natural transformation ηn is an isomorphism, i.e, the ring Rn with the n-
truncated formal A-module Fn ∈ Rn[[X,Y ]]/(X,Y )n represents the functor FGL≤n,A(−)
on A-algebras.

As was explained before this implies Theorem 2.14.

Proof. The statement is clear for n = 2. Hence, we assume the statement for n and
deduce the statement for n+ 1. Let S be any A-algebra and

Gn+1(X,Y ) ∈ S[[X,Y ]]/(X,Y )n+1

an n+ 1-truncated formal group law, and

Gn(X,Y ) ∈ S[[X,Y ]]/(X,Y )n

its n-truncation. Let fn : Rn → S be the unique homomorphism such that

fn,∗Fn(X,Y ) ≡ Gn(X,Y ) mod (X,Y )n

and

fn,∗[a]Fn(X) ≡ [a]G(X,Y ) mod (X,Y )n.

We can extend

fn : Rn = A[t1, . . . , tn−2]→ S

to a homomorphism

f ′n : Rn+1 = A[t1, . . . , tn−1]→ S

by sending tn−1 to 0. Then

f ′n,∗Fn+1, Gn+1

are two lifts of Gn to an n+ 1-truncated formal A-module. By Lemma 2.12 there
exists a unique s ∈ S such that

f ′n,∗Fn+1(X,Y ) + sΓdiv,n(X,Y ) = Gn+1(X,Y ) ∈ S[[X,Y ]]/(X,Y )n+1

and

f ′n,∗[a]Fn+1(X) + shdiv,n(a)Xn = [a]Gn+1(X) ∈ S[[X,Y ]]/(X,Y )n+1

for a ∈ A, where Γdiv,n, hdiv,n have the same meaning as in Proposition 2.15. Define

fn+1 : Rn+1 → S

by sending tn−1 to s. Then

fn+1,∗Fn+1(X,Y )

≡fn+1,∗(Fn+1(X,Y )− tn−1Γdiv,n(X,Y )) + sΓdiv,n(X,Y )

≡f ′n(Fn+1(X,Y )) + sΓdiv,n(X,Y )

≡Gn+1(X,Y )

using that Fn+1 − tn−1Cn(X,Y ) has coefficients in Rn. Similarly, we get that

fn+1,∗([a]Fn+1
(X)) ≡ [a]Gn+1

(X)

for a ∈ A. By Lemma 2.13 we see that this is also our unique choice for fn+1. This
finishes the proof. �
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Theorem 2.16 implies that commutative n-truncated formal group laws can be
lifted to formal group laws. This is wrong for non-commutative n-truncated formal
group laws. Indeed,

F (X,Y ) = X + Y +XY 2 ∈ F2[X,Y ]/(X,Y )4

is a non-commutative truncated formal group law, which cannot be lifted as any
formal group law over F2[[X,Y ]] is commutative, cf. [Laz55, Théoréme 1].

Unfortunately, the proof of Theorem 2.14 is a bit inexplicit as it does not provide
a very concrete formula for a universal (commutative) formal A-module

Funiv(X,Y ) ∈ A[t1, t2, . . .][[X,Y ]]

and its formal multiplication. From Proposition 2.15 and Theorem 2.16 we at least
see that we can arrange that

Funiv(X,Y ) ≡ X + Y + tn−1Γdiv,n(X,Y ) mod (t1, . . . , tn−2) + (X,Y )n+1

and

[a]Funiv(X) ≡ X + tn−1hdiv,n(a)Xn mod (t1, . . . , tn−2) + (X,Y )n+1.

As a concrete example

Funiv(X,Y ) ≡ X + Y + t1XY + t2(X2Y +XY 2) mod (X,Y )3

if A = Z.

Exercise 2.17. We close this section with an exercise on the endomorphisms of
the additive formal A-module.

(1) Let A = Z or a discrete valuation ring with finite residue field, and R a
torsion free A-algebra. Show that

R→ EndFGLA(R)(Ĝa), r 7→ rX

is an isomorphism.
(2) Let A be a complete discrete valuation ring with finite residue field k of

characteristic p and cardinality q, and let R be a k-algebra. Show that

R{{τ}} → EndFGLA(R)(Ĝa),

∞∑
i=0

riτ
i 7→

∞∑
i=0

riX
qi

is an isomorphism, where R{{τ}} denotes the non-commutative ring of
power series in τ and coefficients in R such that

τ · r = rq · τ
for r ∈ R.

2.4. Proof of the lemma of Lazard and Drinfeld. We now turn to the proof
of the crucial, yet technical Lemma 2.13.

Given an A-module M we want to understand the A-module

Dn,A(M)

given by Γ(X,Y ) ∈ M [X,Y ] = M ⊗A A[X,Y ] homogeneous of degree n, h(a) ∈
M, a ∈ A, such that the equations

(1) Γ(X, 0) = 0, Γ(0, Y ) = 0,
(2) Γ(Y,Z) + Γ(X,Y + Z) = Γ(X,Y ) + Γ(X + Y,Z),
(3) Γ(X,Y ) = Γ(Y,X),
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(4) h(a)(Xn + Y n) + anΓ(X,Y ) = h(a)(X + Y )n + aΓ(X,Y ),
(5) h(a+ b)Xn = h(a)Xn + h(b)Xn + Γ(aX, bX),
(6) h(ab) = ah(b) + h(a)bn

are satisfied for a, b ∈ A.
Let

γn ∈ Dn,A(A)

be the collection

{Bn(X,Y ), (an − a), a ∈ A}.
If A = Z Lemma 2.13 reduces to the following statement.

Lemma 2.18. If A = Z, then for any abelian group M we have

Dn,Z(M) = γdiv,n ·M

for γdiv,n given by the collection {Cn(X,Y ), (an−a)
dn

, a ∈ A}.

Here,

Cn(X,Y ) =
1

dn
Bn(X,Y )

with dn = 1 if n is not a prime power and p if n = ph for some prime p as in
Section 2.3.

Before proving Lemma 2.18 let us deduce Lemma 2.13 from Lemma 2.18.

Lemma 2.19. Let A be a complete discrete valuation ring with finite residue field
k having q-elements. Let K := Frac(A) be the fraction field of A. Assuming
Lemma 2.18 the second statement of Lemma 2.13 holds true.

Proof. We first prove the existence of γdiv,n ∈ Dn,A(A) if n is a power of q. Let
p := char(k). Then

Bn(X,Y ) = pCn(X,Y )

and π | p. Moreover, Frobq : k → k is the identity, which implies that

π | (an − a)

for all a ∈ A as n is a power of q. Now, letM be anA-module and {Γ(X,Y ), h(a), a ∈
A} an element in Dn,A(M). We know that

(an − a)Γ(X,Y ) = h(a)Bn(X,Y )

by equation (4). If n is not a power of p, then by Lemma 2.18 we know

Γ(X,Y ) = Bn(X,Y )m

for a unique m ∈M as dn is invertible in A in this case. Therefore we get

(an − a)m = h(a)

as desired. Next assume that n is a power of p, but not of q. Then there exists
a ∈ A such that

an − a /∈ (π).

Set

m :=
1

(an − a)
h(a) ∈M.

Then for each b ∈ A
ah(b) + bnh(a) = h(ab) = h(ba) = bh(a) + anh(b),
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which implies

h(b) = (bn − b) h(a)

(an − a)
= (bn − b)m

for each b ∈ B. Moreover,

Γ(X,Y ) = Bn(X,Y )m

as we saw above. Finally, assume that n is a power of q. Set

m :=
h(π)

πn−1 − 1
.

Substracting

m · γdiv,n

from the data {Γ(X,Y ), h(a), a ∈ A} reduces us to the case that h(π) = 0. We
have to show that Γ(X,Y ) = 0 and h(a) = 0 for a ∈ A. We then know that

πh(b) = (bn − b) h(π)

(πn−1 − 1)
= 0

for b ∈ B. This implies

h(πb) = 0

for b ∈ B. In particular, h(p) = 0 as π|p. By Lemma 2.18, i.e., the case A = Z, we
know that

Γ(X,Y ) = Cn(X,Y )m′

for a unique m′ ∈M and that

h(p) = (pn−1 − 1)m′.

As pn−1 − 1 is a unit in A we can conclude that m′ = 0. We know πh(a) = 0 for
all a ∈ A thus

bnh(a) = bh(a)

for all b ∈ A as n is a power of q. In particular, h defines a derivation A→M with
image in the π-torsion M [π] of M . Because h(πb) = 0 for all b ∈ B, this derivation
factors over a derivation

h : k →M [π].

Any such derivation is trivial as k is a perfect field. Indeed, each x ∈ k admits a
p-th root y and

h(x) = pyp−1h(y) = 0.

This finishes the proof. �

Thus, we have reduced to the case that A = Z. Let us show that in this
case only the equations 1), 2), 3) are relevant. Let M be an abelian group and
let Γ(X,Y ), h(a), a ∈ A, be an element of Dn,Z(M). If we write

Γ(X,Y ) =
∑

0<i<n

miX
iY n−i,

then the first three imposed relations reduce to

mi = mn−i, 0 < i < n,

and (
j + k

j

)
mi =

(
i+ j

j

)
mi+j
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for 0 < i, j, k < n, i+ j + k = n. The forth relation becomes

(an − a)mi = h(a)

(
n

i

)
for 0 < i < n while the fifth relation becomes

h(a+ b) = h(a) + h(b) +
∑

0<i<n

mia
ibn−i.

Assume now that

Γ(X,Y ) = mCn(X,Y ) =
∑

0<n<n

m
1

dn

(
n

i

)
XiY n−1

for some necessarily unique m ∈M . Then we get by induction

h(a) =
1

dn
(an − a)m.

Indeed, h(1) = 0 and

h(a+ 1)

=h(a) +
∑

0<i<n

m
1

dn

(
n

i

)
ai

=
1

dn
(an − a)m+m(

1

dn
((a+ 1)n − an − 1)

=
1

dn
((a+ 1)n − a− 1)m

using induction on a. Similarly, one checks the statement for a < 0 using downward
induction starting with the case a = 0. In particular, Lemma 2.18 follows from
Lemma 2.20

Lemma 2.20 (Lucas’ theorem). Let M be an abelian group and let mi,j ∈M, 0 ≤
i, j ≤ n, i+ j = n, satisfying

mn,0 = m0,n = 0,mi,j = mj,i

for all 0 ≤ i, j ≤ n, and (
i+ j

j

)
mi+j,k =

(
j + k

j

)
mi,j+k

for all 0 < i, j, k < n. Then there exists a unique m ∈M , such that

mi := mi,n−i =
1

dn

(
n

i

)
m

for 0 < i < n.

For the proof we follow [Lur10, Lecture 3].

Proof of Lemma 2.20. Uniqueness follows from the fact that the greatest common
divisor of the coefficients of Cn(X,Y ) is 1, cf. Lemma 2.21. We can assume that M
is finitely generated by considering the subgroup generated by the mi,j , 0 ≤ i, j ≤ n.
Then M is isomorphic to the kernel of the map

M ⊕Z Q⊕
∏
p

M ⊗Z Zp →M ⊗Z Qp, (a, b) 7→ a− b,
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where the product runs over all primes p and we identified

(M ⊗Z Zp)⊗Zp Qp ∼= M ⊗Z Qp ∼= (M ⊗Z Q)⊗Q Qp.

By uniqueness of M we may therefore replace M by M ⊗Z Zp or M ⊗Z Q and
assume that M is a Z(p)-module for some prime p. The assumption on the collection
{mi}0≤i≤n implies that if mi = 0 for some 0 < i < n and k = i+ j < n satisfies(

k

i

)
6≡ 0 mod p,

then mk = 0. Indeed,
(
k
i

)
is a unit in Z(p) in this case. By Lemma 2.21

(
i+j
j

)
6≡

0 mod p if in p-adic expansion the sum i + j can be calculated without carrying,
i.e., the p-adic digits in i+ j are larger than the p-adic digits of i (or j) First let us
assume that n = ph for some h ≥ 1. Lemma 2.21 implies that

1

p

(
ph

ph−1

)
6≡ 0 mod p.

Hence replacing mi,j by mi,j +a 1
p

(
n
i

)
mp(h−1) for a suitable a ∈ Z(p) we may assume

that mph−1 = 0. Let

ph−1 ≤ k < ph.

By Lemma 2.21 (
k

ph−1

)
6≡ 0 mod p

as the sum k = ph−1 + (k − ph−1) is computed without carrying in the p-adic
expansion (as k < (p− 1)ph−1) and k ≥ ph−1. As we saw above this yields mk = 0.
If 0 < k < ph−1, then

mk = mph−k = 0

as ph−1 ≤ ph − k < ph. This finishes the proof in the case that n = ph is a power
of p. Next assume that n is not a power of p and write n = phn′ with n′ > 1 and
p - n′. By Lemma 2.21 we know that(

n

ph

)
6≡ 0 mod p.

As above we may then assume that mph = 0. If h ≥ 1, then mn−ph = 0 by
symmetry. By Lemma 2.21 (

n− ph−1

(p− 1)ph−1

)
6≡ 0 mod p

as n−ph−1 = n−ph+(p−1)ph−1 can be calculated in its p-adic expansion without
carrying. From the remark made at the beginning of the proof we get that

mn−ph−1 = 0,

from which we deduce that mph−1 = mph = 0 if h ≥ 1. Now let 0 < i, j < n with
i + j = n. We need to see that mi = 0 or by symmetry equivalently mj = 0. By
assumption we have

n = ahp
h +

∞∑
i=h+1

aip
i
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in p-adic expansion with 0 < ah < p. Either i or j must have a non-trivial p-adic
digit in front of ph−1 (only possible if h ≥ 1) or ph. Assume this is the case for i
and the coefficient in front of ph. By Lemma 2.21 we can conclude that(

i

ph

)
6≡ 0 mod p

and thus mi = 0 because mph = 0 and the remark made at the beginning of the

proof. If the p-adic digit in front of ph−1 (if h ≥ 1) of i is non-zero, then similarly(
i

ph−1

)
6≡ mod

and thus mi = 0 using mph−1 = 0. This finishes the proof. �

Lemma 2.21. Let p be a prime. Let a =
∞∑
i=0

aip
i, b =

∞∑
i=0

bip
i ∈ Z≥0 be two natural

numbers in their p-adic expansion, i.e., ai, bi ∈ {0, . . . , p− 1}. Then(
a

b

)
≡
∞∏
i=0

(
ai
bi

)
mod p.

Moreover, for h ≥ 1 and we have 1
p

(
ph

ph−1

)
6≡ 0 mod p.

Here,
(
a
b

)
= 0 if b > a and

(
0
0

)
= 1. Lemma 2.21 can be used to give a proof that

dn =

{
1, if n is not a prime power

p, if n is a power of the prime p.

Namely, if n is not a power of p, then write n =
h∑
i=0

aip
i with ah 6= 0, and set

i := ahp
h, j := n− i > 0. Lemma 2.21 implies that

(
n
i

)
is not divisible by p.

Proof. Consider the set

(9) S =

a0∐
k=1

Z/p0 t
a1∐
k=1

Z/p1 t
a2∐
i=1

Z/p2 t . . .

of cardinality a with its evident action of the group

G :=

∞∏
i=0

(Z/pi)ai .

Let T be the set of subsets of S of cardinality b. Then ]T =
(
a
b

)
and G acts on T .

As G is a p-group
]T ≡ ]TG mod p,

where TG is the fixed point set of G. But a b-element subset S′ ⊆ S is fixed under
G if and only if it is a union of G-orbit. From ((9)) we can conclude that there are

∞∏
i=0

(
ai
bi

)
possible choices for choosing orbits, such that their union has b-elements. This
proves the first assertion. Let us prove that

1

p

(
ph

ph−1

)
6≡ 0 mod p.
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This is clear if h = 1 as then
(
p
1

)
= p. For h ≥ 2 note that

(X + Y )p
h−1

≡ Xph−1

+ Y p
h−1

mod p,

which implies

(X + Y )p
h

≡ (Xph−1

+ Y p
h−1

)p mod p2

as the p-th power map is p-adically contracting. From here we can conclude

Cph(X,Y ) ≡ Cp(Xph−1

, Y p
h−1

) = (Cp(X,Y ))p
h−1

6≡ 0 mod p

and by looking at the coefficient of Xph−1

Y (p−1)ph−1

= (XY p−1)p
h−1

1

p

(
ph

ph−1

)
≡ 1

p

(
p

1

)
6≡ 0 mod p.

This finishes the proof. �

2.5. Consequences for formal A-modules. We let again A denote Z or a dis-
crete valuation ring with finite residue field (in which case we fix a uniformizer
π).

For n ≥ 2 let

γn, γdiv,n ∈ Dn,A(A)

denote the elements from Lemma 2.13 with corresponding data

{Bn(X,Y ), (an − a), a ∈ A}, {Γdiv,n(X,Y ), hdiv,n(a), a ∈ A}

satisfying the equations in Lemma 2.12. In the following we fix an A-algebra R.
Most of the following results rest on the following lemma, cf. [Vla76, Propositon

1.5.].

Lemma 2.22. Let F ∈ R[[X,Y ]]/(X,Y )n+1 be an n + 1-truncated formal A-
module, let r ∈ R and let

ϕn(X) := X + rXn ∈ R[[X]]/(X)n+1.

Then

ϕ−1
n (F (ϕn(X), ϕn(Y ))) ≡ F (X,Y )− rBn(X,Y ) mod (X,Y )n+1

and

ϕ−1
n ([a]F (ϕn(X)) ≡ [a]F (X)− r(an − a)Xn mod (X,Y )n+1

for a ∈ A.

Here, ϕ−1
n (X) ∈ R[[X]]/(X)n+1 denotes the inverse R-algebra morphism to

X 7→ ϕn(X).

In other words, Lemma 2.22 explains how we can change truncated formal A-
modules by changing the coordinate, namely exactly by some multiple of γn.

Proof. We calculate
F (ϕn(X), ϕn(Y ))

≡F (X + rXn, Y + rY n)

≡F (X,Y ) + rXn + rY n
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and
ϕn(F (X,Y )− rBn(X,Y ))

≡ϕn(F (X,Y ))− rBn(X,Y )

≡F (X,Y ) + r(X + Y )n − rBn(X,Y )

≡F (X,Y ) + rXn + rY n.

If a ∈ A we get
[a]F (ϕn(X))

≡[a]F (X) + arXn

and
ϕn([a]F (X)− r(an − a)Xn)

≡ϕn([a]F (X))− r(an − a)Xn

≡[a]F (X) + ranXn − r(an − a)Xn

≡[a]F (X) + raXn.

This finishes the proof. �

Let K be the fraction field of A.

Lemma 2.23. Assume that R is a K-algebra, and F ∈ R[[X,Y ]] a formal A-
module. Then there exists a unique power series logF ∈ R[[X]] with logF (0) =
0, log′F (0) = 1 and

logF (F (X,Y )) = logF (X) + logF (Y )

and

logF ([a]F (X)) = alogF (X)

for a. Moreover,

EndFGLA(R)(Ĝa) ∼= R, g(X) 7→ g′(0)

In other words, if R is a K-algebra, then each formal A-module over R is iso-
morphic to the additive one.

Proof. By Exercise 2.17

EndFGLA(R)(Ĝa) ∼= R, g(X) 7→ g′(0)

which implies uniqueness of logF . The existence of logF for the universal formal
A-module was implicitly proven in Proposition 2.15. Alternatively, it follows from
Lemma 2.22. Namely, as R is a K-algebra γn generates Dn,A(R) by Lemma 2.13.

By Lemma 2.22 we see that we can iteratively find an isomorphism F ∼= Ĝa. �

Let us now fix a prime p, and assume that R is Z(p)-algebra. We may then replace
A by A⊗Z Z(p) if we consider formal A-modules over R. Hence, assume from now
on that A is a (not necessarily complete) discrete valuation ring with finite residue
field k of characteristic p and cardinality q. In this case we will analyze a formal
A-module by analyzing its endomorphism [π] for π ∈ A a fixed uniformizer.

Recall that in Section 2.1 we introduced the height of a formal A-module over a
field extension k′ of k. Namely, F ∈ k′[[X,Y ]] is of height h if and only if

[π]F (X) ≡ aXqh mod (X)q
h+1

with a ∈ k′,×.
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Let
Funiv(X,Y ) ∈ ΛA[[X,Y ]] ∼= A[t1, t2, . . .][[X,Y ]]

be a universal formal group law as constructed via Proposition 2.15. Then we know
that for h ≥ 1

[π]F (X) ≡ tqh−1(πq
h−1 − 1)Xqh mod (π, t1, . . . , tqh−2) + (X,Y )q

h+1

because hdiv,qh(π) = πq
h−1 − 1. Set

v0 := π

and
vi := (πq

i−1 − 1)tqi−1

for i ≥ 1. Note that

ΛA ∼= A[t0, t1, . . . , tq−2, v1, tq, . . . , tqi−2, vi, tqi , . . .]

as πq
i−1 − 1 ∈ A× for i ≥ 1.

Now we generalize the notion of a height to an arbitrary A-algebra R.

Definition 2.24. Let h ∈ Z≥0 ∪ {∞}. Let F ∈ R[[X,Y ]] be a formal A-module.
Then F is called of height ≥ h (resp. height h) if

[π]F (X) ≡ 0 mod (Xqh)

(resp.

[π]F (X) ≡ rXqh mod (X)q
h+1

with r ∈ R×).

A formal A-module over R is of height 0 if and only if R is a K-algebra. Equiv-
alently, F is of height ≥ 1 if and only of πR = 0, i.e., R is a k-algebra. If F is of
height 0, then by Lemma 2.23

F ∼= Ĝa,R.
Clearly, the formal A-module Fh ∈ k[[X,Y ]] constructed in Lemma 2.4 is of height
h ≥ 1. If R is a k-algebra, then the formal A-module

Ĝa,R
is of height ∞.

The following lemma implies that Definition 2.24 is invariant under isomorphisms
of formal A-modules and that it does not depend on the choice of Funiv.

Lemma 2.25. Let R be a k-algebra, F ∈ R[[X,Y ]] a formal A-module and 1 ≤
h <∞. Then the following are equivalent:

(1) F is of height ≥ h,

(2) [π]F factors over Frobhq : F (qh) → F , cf. Section 2.1,

(3) F is isomorphic to a formal A-module F ′ such that [π]F ′(X) = 0 mod (X)q
h+1,

(4) if F = f∗Funiv for f : ΛA → R, then f(vi) = 0 for i < h,

(5) F is isomorphic to Ĝa modulo (X,Y )q
h

, i.e., there exists ϕ ∈ X+X2R[[X]]
with ϕ′(0) ∈ R× such that

ϕ(F (X,Y )) ≡ ϕ(X) + ϕ(Y ) mod (X,Y )q
h

,

and
ϕ([a]F (X)) ≡ aϕ(X) mod (X)q

h
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In particular, F is of height ∞ if and only if [π]F (X) = 0 if and only if F ∼= Ĝa,R.

Proof. 1) ⇒ 2) follows from the proof of Lemma 2.2. 2) ⇒ 1) is clear as Frobhq is

represented by the series Xqh . As 2) is invariant under isomorphisms we see that 3)
is equivalent to 1). Alternatively, we could argue that substituting X by some power

series ϕ(X) with ϕ(0) = 0, ϕ′(0) preserves the ideal (X)q
h

. From the argument for

1) ⇒ 2) we see that if [π]F (X) = 0 mod Xn, then [π]F (X) = 0 mod (X)q
i+1

if

qi ≤ n < qi+1. Moreover, if [π]F (X) = 0 mod (Xqi), then we can conclude that

[π]F (X) ≡ viXqi mod (X)q
i+1. This implies that 4) is equivalent to 1). As

[π]Ĝa(X) = π ·X = 0

we see that 5) ⇒ 3). Thus assume that F is of height ≥ h. We may argue via
induction on m < qh that we find ϕ(X) ∈ X +X2R[[X]] with

ϕ(F (X,Y )) ≡ ϕ(X) + ϕ(Y ) mod (X,Y )m

and similarly for the formal multiplication. The case m = 2 is clear and we may
assume that

F (X,Y ) ≡ X + Y mod (X,Y )m.

By Lemma 2.12 and Lemma 2.13 we know that

F (X,Y ) ≡ X + Y ≡ rΓdiv,m(X,Y ) mod (X,Y )m+1

and

[a]F (X) ≡ aX + rhdiv,n(a)Xm mod (X)m+1

for a ∈ A. If m is not a power of q, then by Lemma 2.22 we may take

ϕ(X) = X − rXm.

If m = qi with i < h, then we know that

[π]F (X) ≡ viXqi ≡ r(πq
i−1 − 1)Xqi ≡ rXqi mod (X)m+1.

As vi = 0 this implies that r = 0 and automatically.

F (X,Y ) ≡ X + Y mod (X,Y )m+1.

This finishes the proof. �

Recall that in Exercise 2.17 we computed the endomorphisms Ĝa over some
k-algebra R. Thereby the infinite height case is completely understood.

If A is of characteristic p and R any A-algebra, then Lemma 2.25 implies that the
underlying formal group law of each formal A-module F ∈ R[[X,Y ]] is isomorphic

to Ĝa. Indeed, as

[p]F (X) = 0

as p = 0 ∈ A, the underlying formal Z(p)-module is of height ∞. This does of
course not imply that the formal A-module F is of height ∞.

Recall that we constructed for h ∈ Z≥1 in Lemma 2.4 a formal A-module Fh ∈
k[[X,Y ]] of height h such that

[π]Fh(X) = Xqh ∈ k[[X,Y ]].

It is nearly true that each formal A-module over a k-algebra R of height h is
isomorphic to Fh. It is true after passing to a faithfully flat ind-finite étale R-
algebra. Let us give the relevant definitions.
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Definition 2.26. Let f : R→ S be a map of arbitrary rings. Then f is called finite
étale if S is a finite projective R-module and the trace bilinear form

TrS/R : S × S → R,

which exists by finite projectivity of S over R, is non-degenerate, i.e., its adjoint
S → HomR(S,R) is an isomorphism. We call f ind-finite étale if S = lim−→

i

Si is a

filtered colimit of R-algebras Si, which are finite étale over R. We call f flat if f is
S is a flat R-module, and faithfully flat if f is flat and S⊗RM = 0 implies M = 0
for any R-module M .

Let us give examples of (ind-)finite étale morphisms.

Example 2.27. (1) Let R be any ring and assume that f(X) ∈ R[X] is a
monic polynomial with derivative f ′(X) ∈ R[X] such that

(f(X), f ′(X)) = R[X].

Then

S := R[X]/(f(X))

is a finite étale R-algebra. Indeed, S is finite free over R and we have to
see that the adjoint of the trace bilinear form

S → HomR(S,R)

is an isomorphism. This amounts to checking that the determinant of a
matrix is invertible. But this can be checked after base change to fields,
and then to algebraiclly closed fields. Thus we may assume that L = R
is an algebraically closed field. In this case the condition (f(X), f ′(X))
means that the polynomial f(X) is multiplicity free. This implies that S is
a finite product of copies of L. But then the trace bilinear form is clearly
non-degenerate.

(2) By base change to an algebraically closed extension it is easy to see that if
R = L is a field, then a commutative finite dimensional L-algebra S is finite
étale if and only if it is a product of separable field extensions. In particular,
if L is separably closed, then each (non-zero) finite étale L-algebra S admits
a retraction S → L as L-algebras.

Let us say that a formal A-module F ∈ R[[X,Y ]] of height h ∈ Z≥1 over a
k-algebra R is normalized if

[π]F (X) = Xqh .

As F ([π]F (X), [π]F (Y )) = [π]F (F (X,Y )) and [π]F ([a]F (X)) = [a]F ([π]F (X)) for
a ∈ A, it follows that a normalized formal A-module and its formal multiplication
have coefficients in the subring

RFrob
qh

=Id := {x ∈ R | xq
h

= x} ⊆ R.

For example, the module Fh ∈ k[[X,Y ]] from Lemma 2.4 is normalized. More
generally, we have the following.

Lemma 2.28. Let R be a k-algebra, h ∈ Z≥1 and F ∈ R[[X,Y ]] a formal A-module
of height h. Then there exists a faithfully flat ind-finite étale R-algebra S such that
F ⊗̂RS is isomorphic to a normalized formal A-module F ′ ∈ S[[X,Y ]].
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Proof. By Lemma 2.25 we can assume that

F (X,Y ) ≡ Ĝa mod (X,Y )q
h

.

By assumption

[π]F (X) ≡ aXqh mod (X)q
h+1

with a ∈ R×. As qh = 0 in R and a ∈ R× the R-algebra

S := R[T ]/(T q
h−1 − a)

is finite étale over R by Example 2.27. After replacing R by S we may therefore

assume that there exists b ∈ R with bq
h−1 = a. Set

ϕ(X) = b−1X.

Then

ϕ−1([π]F (ϕ(X))) ≡ Xqh mod (X)q
h+1

and we may replace F by ϕ−1(F (ϕ(X), ϕ(Y ))) and assume that

[π]F (X) ≡ Xqh mod (X)q
h+1.

Let m ≥ qh. By induction we may assume that

[π]F (X) ≡ Xqh mod (X)m.

By Lemma 2.2 we know that [π]F (X) = g(Xqh) for some power series g. Hence,
we only have to deal with m = kqh with k ≥ 2. In this case write

[π]F (X) ≡ Xqh + aXkqh mod (X)m+1.

If we set

ϕ(X) = X − bXk,

then
ϕ([π]F (ϕ−1(X)))

≡[π]F (ϕ−1(X))− bXkqh

≡Xkqh + bq
h

Xkqh + aXkqh − bXkqh

≡Xkqh + (bq
h

− b+ a)Xkqh

mod (X)kq
h+1 as

ϕ−1(X) = X + bXk mod Xk+1.

The R-algebra S := R[X]/(Xqh −X + a+ 1) is finite étale over R. Hence, we may
enlarge R an assume that there exists b ∈ R with

bq
h

− b+ a+ 1 = 0.

This concludes the proof. �

We can now prove a generalization of the previously announced Theorem 2.5.

Theorem 2.29. Let h ∈ Z≥1 and R a k-algebra. Any two normalized formal
A-modules F1, F2 ∈ R[[X,Y ]] of height h are isomorphic. In particular, any two
formal A-modules of height h become isomorphic over a faithfully flat ind-finite
étale R-algebra, and if R = k′ is a separably closed field extension of k, then two
formal A-modules are isomorphic if and only if they have the same height.
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Proof. This follows from Lemma 2.22, Lemma 2.28 and the fact that every faithfully
flat ind-finite étale algebra S over some separably closed field k′ admits a retraction
S → k′. Namely, we may assume that

RFrob
qh

=Id = R,

which implies that for ϕ(X) ∈ X ·R[[X]] with ϕ′(0) ∈ R×, the R-algebra automor-
phism

ϕ : R[[X]]→ R[[X]], X 7→ ϕ(X)

transforms normalized formal A-modules to normalized A-modules. Using the usual
arguments the crucial point is to see that if F1, F2 are normalized formal A-modules
of height h and

F1(X,Y ) ≡ F2(X,Y ) mod (X,Y )m

for some power m = qi, i ≥ 0, of q, then

F1(X,Y ) ≡ F2(X,Y ) mod (X,Y )m+1.

We know that
[π]F2

(X) ≡ [π]F1
(X) + aXm mod (X)m+1

for some a ∈ R. As F1, F2 are normalized we get a = 0 because hdiv,m(π) = 1−πm−1

is a unit in R. �

Lemma 2.25 and Lemma 2.13 imply that there exists a normalized formal A-
module Fh ∈ k[[X,Y ]] of height h ∈ Z≥1 with

Fh(X,Y ) ≡ X + Y − p

π
Cqh(X,Y ) mod (X,Y )q

h+1

and

[a]Fh(X) ≡ aX − aq
h − a
π

Xqh mod (X,Y )q
h+1.

We shortly discuss another structure of the Lazard ring, namely its grading.
Let

Gm : (AlgA)→ (Grp), R 7→ R×.

be the multiplicative group over A. Then Gm acts on the functor

FGLA(−).

Indeed, givenR ∈ AlgA and a formalA-module F ∈ R[[X,Y ]], [a]F (X) ∈ R[[X]], a ∈
A, then

r.F (X,Y ) := r−1F (rX, rY ), [a]r.F (X) := r−1[a]F (rX), a ∈ A,
is another formal A-module.9 If F is classified by the map

gF : ΛA ∼= A[t1, t2, . . .]→ R,

then by Proposition 2.15 and the proof of Lazard’s theorem we see that

gr.F (ti) = rigF (ti)

as

r−1tiΓdiv,i+1(rX, rY ) = ritiΓdiv,i+1, r
−1tihdiv,i+1(a)ri+1Xi+1 = rihdiv,i+1(a)Xi.

for i ≥ 1, a ∈ A. In other words,

ΛA ∼= A[t1, t2, . . .]

9This is a special case of the action of the group G, which was discussed after Exercise 2.1
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as graded rings if ti has degree i (and ΛA its graduation coming from the Gm-action
on FGLA).

To complete the discussion of formal A-modules of height h ∈ Z≥1 we have to
calculate the endomorphism

EndFGLA(R)(F )

for such a formal A-module F . For this we may assume that A is complete. By
Theorem 2.29 it suffices to consider the case that F is normalized and describe

EndFGLA(R)(F ).

The general case will be given by twists with a torsor under the functor of units in
EndFGLA(R)(F ). As F is assumed to be normalized each endomorphism of F over
R is already defined over the subring

RFrob
qh

=Id ⊆ R.

Let us discuss the structure of this subring. For a ≥ 1 we let ka/k be an extension
of degree a over k (which is unique up to isomorphism).

Exercise 2.30. If R is a k-algebra of finite type, then RFrob
qh

=Id is isomorphic to
a finite product of ka’s for 1 ≤ a ≤ h. The number of factors equals ]π0(Spec(R)).

Writing R as a colimit of k-algebras of finite type, we can conclude that if R is
a kh-algebra, then

RFrob
qh

=Id ∼= Homcts(π0(Spec(R)), kh)

with

π0(Spec(R))

the profinite set of connected components of Spec(R), cf. [Sta17, Tag 0906].

Note that S := RFrob
qh

=Id is a perfect ring, i.e., its Frobenius is bijective. In
particular, there exists a π-complete, π-torsion free A-algebra A(S) unique up to
unique isomorphism with a fixed isomorphism

A/π ∼= S,

cf. [FF18, Proposition 2.1.7.]. For example, A(ka) is isomorphic to the ring of
integers in the unramified extension of K of degree a. In general, each element in
A(S) can be represented as a power series∑

i=0

[si]π
i

with si in S and [−] : S → A(S) the Teichmüller lift, which can be constructed as in
Exercise 1.11. The q-Frobenius on S lifts uniquely to an A-algebra homomorphism

σ : A(S)→ A(S),

which is functorial in S. We can give the desired description of

EndFGLA(R)(F )

if F ∈ R[[X,Y ]] is normalized. By Theorem 2.29 (and Lemma 2.4) we may assume
that F and its formal multiplication are defined over k.
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Lemma 2.31. Let R be a k-algebra and set S := RFrob
qh

=1. Let F ∈ R[[X,Y ]] be
a normalized formal A-module with coefficients in k. Then

EndFGLA(R)(F ) = A(S)⊕A(S)Π⊕ . . .⊕A(S)Πh−1

with Π(X) = Xq satisfying Πh = π and

aΠ = Πσ(a)

for a ∈ A(S).

If R = k, then this lemma was Exercise 2.6.

Proof. We may assume R = S as F is normalized and therefore its addition, formal
multiplication and endomorphisms are already defined over S. Replacing A by
A(S) (and q by qh) in Lemma 1.14 the same proof works, cf. Remark 1.15 and
Theorem 1.26. In particular, we can deduce the existence of a natural injective
homomorphism

ι : A(S)→ EndA(F ).

As F is defined over k it is clear that Π(X) = Xq defines an endomorphism of F .
As F is normalized it is clear that

Πh(X) = [π]F (X).

Moreover, for a ∈ A(S)

ι(a) ◦Π(X) = Π ◦ ι(σ(a))

by definition of Π and σ. In particular, ι extends to a morphism

ι : A(S)⊕A(S)Π⊕ . . .⊕A(S)Πh−1 → EndFGLA(R)(F )

of A-algebras. Let f : F → F be an endomorphism over S. After subtracting some
ι(a) with a ∈ A(S) we may assume that f ′(0) = 0. By Lemma 2.2 we see that we
can write

f = g ◦Π

for a morphism g : F → F of formal A-modules. Continuing we find that we can
write

f = ι(

∞∑
i=0

aiΠ
i)

for some ai ∈ A(S). Replacing Πh by π we even get a unique expansion of the form

f = ι(

h−1∑
i=0

aiΠ
i)

with a0, . . . , ah−1 ∈ A(S). We use that the A-algebra EndFGLA(S)(F ) is π-complete
and π-torsion free. This last statement follows easily using that EndFGLA(R)(F ) ⊆
R[[X]] is X-adically closed. �

If R = kh, then EndFGLA(kh)(F ) is isomorphic to the maximal order of the
division algebra of invariant 1/h over K = Frac(A), cf. Section 1.10.

Exercise 2.32. Assume that A is any field, that R ∈ AlgA, and F is a formal
A-module law over R (in the sense discussed in beginning of Section 2). Show that

F ∼= Ĝa
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as formal A-modules.
Hint: Reduce to F (X,Y ) = X + Y and char(A) = p > 0. Then consider

ι : A→ EndFGL(R)(Ĝa) = R{{τ}}
with R{{τ}} as in Exercise 2.17. Now prove by induction on i that up to isomor-
phism one can arrange ι(a) ≡ a mod (τ)i for all a ∈ A.
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2.6. Proof of representability of Lubin-Tate spaces. We are now ready to
start the proof of the representability of the Lubin-Tate spaces. Let us recall the
setup. We suppose that A is a complete discrete valuation ring with finite residue
field k of characteristic p, and q := ]k. Let π ∈ A be a fixed uniformizer. Let

Fh ∈ k[[X,Y ]]

be a formal A-module of height h. Let

NilpA

be the category of A-algebras R such that π is nilpotent in R.
The results (and proofs) in this section work the same if we replace k, Fh by

any perfect k-algebra k′ and Fh ∈ k′[[X,Y ]] any formal A-module of (exact) height
h ∈ Z≥1 and replace accordingly NilpA by the category NilpA(k′) of A(k′)-algebras

R with π nilpotent in R and A[[X1, . . . , Xh−1]] by A(k′)[[X1, . . . , Xh−1]], for A(k′)
the unique π-complete, π-torsion free A-algebra with A(k′)/π ∼= k′. For simplicity
in notation we stick to the case k′ = k.

Let us recall the definition of the Lubin-Tate space associated with Fh, cf. Sec-
tion 2.2.

Definition 2.33. For R ∈ NilpA we set

MFh(R)

as the set of ?-isomorphism classes of formal A-module laws F ∈ R[[X,Y ]] such
that F ≡ Fh ∈ R/I[[X,Y ]] for some nilpotent ideal I ⊆ R with π ∈ I. The functor

MFh : NilpA → (Sets)

is called the Lubin-Tate space (for Fh).

Let us construct a (non-canonical) morphism

η : Spf(A[[X1, . . . , Xh−1]])→MFh .

For this let
gFh : ΛA → k

be the morphism classifying the formal A-module Fh ∈ k[[X,Y ]]. As Fh is of height
h we know

gFh(vi) = 0, i = 0, . . . , h− 1.

Therefore, we can choose a morphism

gFh : ΛA → A[[X1, . . . , Xh−1]]

with
gFh(vi) = Xi, i = 1, . . . , h− 1

lifting gFh along the surjection A[[X1, . . . , Xh−1]] → k sending Xi to 0 for i =
1, . . . , h− 1. For each n ≥ 1 the formal A-module over

A[[X1, . . . , Xh−11]]/(πn, Xn
1 , . . . , X

n
h−1)

is a ?-deformation of Fh by construction, and this defines by the Yoneda lemma a
morphism

ηn : Spec(A[[X1, . . . , Xh−1]]/(πn, Xn
1 , . . . , X

n
h−1)→MFh .

Passing to the colimits of the compatible morphisms ηn yields the desired morphism

η : Spf(A[[X1, . . . , Xh−1]])→MFh .
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Definition 2.33 is now implied by the following theorem, which will be the main
result of this section and its proof will occupy us till the end of this section.

Theorem 2.34 (Lubin-Tate/Drinfeld). The above morphism

η : Spf(A[[X1, . . . , Xh−1]])→MFh .

is an isomorphism.

The following lemma will help to get rid of the ?-isomorphisms.

Lemma 2.35. Let R → S in NilpA be a surjection with nilpotent kernel, and
F ∈MFh(S) be ?-deformation of Fh. Then the fiber of

MFh(R)→MFh(S)

over F is given by the set of equivalence classes of formal A-modules F̃ ∈ R[[X,Y ]]

reducing to F ∈ S[[X,Y ]], where F̃1, F̃2 are called equivalent if there exists an

isomorphism f : F̃1 → F̃2 reducing to the identity in S.

Proof. Given formal A-modules F̃1, F̃2 ∈ R[[X,Y ]] lifting F , then by Lemma 2.10

each ?-isomorphism f : F̃1 → F̃2 reduces to the identity in S. Furthermore, if
F̃ ∈ R[[X,Y ]] is a formal A-module and g : F̃ ⊗̂RS ∼= F a ?-isomorphism, then we
can lift the power series g ∈ S[[X]] to a power series h ∈ R[[X]]. As R → S has a
nilpotent kernel, the power series h defines an automorphism of R[[X]]. Replacing

F̃ by h(F̃ (h−1(X), h−1(Y ))) we may then assume that F̃ (X,Y ) (and its formal
multiplication) reduces to F . �

The functor MFh satisfies the (formal) Mayer-Vietoris property and is formally
smooth as we know explain. Let

G : NilpA → (Sets)

be a functor.

Definition 2.36. The functor G satisfies the (formal) Mayer-Vietoris property if
for any morphism R1 → S,R2 → S in NilpA with R1 → S surjective with nilpotent
kernel the natural morphism

G(R1 ×S R2)→ G(R1)×G(S) G(R2)

is a bijection. The functor G is called formally smooth if for any surjection R→ S
in NilpA with nilpotent kernel the map

G(R)→ G(R/I)

is surjective.

Clearly,

Spf(A[[X1, . . . , Xn]]) = HomA,cts(A[[X1, . . . , Xn]],−) : NilpA → (Sets)

satisfies the Mayer-Vietoris property and is formally smooth. As a prerequisite
to Definition 2.33 we show that the Lubin-Tate spaces MFh satisfy the (formal)
Mayer-Vietoris property and are formally smooth as well.

Lemma 2.37. The functor

MFh : NilpA → (Sets)

satisfies the (formal) Mayer-Vietoris property and is formally smooth.
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Proof. Let ϕ1 : R1 → S, ϕ2 : R2 → S be morphisms in NilpA with ϕ1 surjective with
nilpotent kernel. Set R := R1×S R2 and let πi : R→ Ri the respective projections.
We have to prove that the morphism

MFh(R)→MFh(R1)×MFh
(S)MFh(R2)

is a bijection. For this it suffices to see that for each ?-deformation F2 ∈ R2[[X,Y ]]
of Fh the fibers N1, N2 of

MFh(R)→MFh(R2)

and

MFh(R1)→MFh(S)

over F ∈ MFh(R2) resp. ϕ2,∗F ∈ MFh(S) are in bijection (via ϕ1). Note that
R → R2, R1 → S are surjections with nilpotent kernels. By Lemma 2.35 we can
conclude that N1 identifies with isomorphism classes of formal A-modules G ∈
R[[X,Y ]] with second component F , while N2 identifies with isomorphism classes
of formal A-modules G′ ∈ R1[[X,Y ]] reducing to ϕ2,∗F . By the definition of the
fiber product

R = R1 ×S R2

we see that ϕ1 induces a bijection N1 → N2 as desired. The formal smoothness
of MFh follows directly from Lemma 2.35 and Theorem 2.14. Indeed, Lazard’s
theorem implies that formal A-modules can be lifted along any surjection of rings.

�

Lemma 2.37 explains why we have to put this strange condition on the existence
of the nilpotent ideal I in the definition of MFh . The functor sending R ∈ NilpA
to the set of F ∈ R[[X,Y ]] reducing to Fh module π (taken up to isomorphisms
reducing to the identity mod π) does not satisfy the Mayer-Vietors property as in
general the morphism

(R1 ×S R2)/(π)→ R1/π ×S/π R2/π

is not injective.
We first reduce the question whether

ηR : Spf(A[[X1, . . . , Xn]])(R)→MFh(R)

is a bijection for any R ∈ NilpA to the case that R has a particular shape.

Lemma 2.38. Assume that

ηR : Spf(A[[X1, . . . , Xn]])(R)→MFh(R)

is a bijection for any local A-algebra R with residue field k whose maximal ideal
contains π and is nilpotent. Then ηS is a bijection for any S ∈ NilpA.

In the more general situation with k replaced by any perfect k′-algebra, the
conditions on R have to be replaced by the conditions that N il(R) is nilpotent,
contains π and that k′ → R/N il(R) is an isomorphism. The proof of Lemma 2.38
works as well (even though the ring S′ appearing there need not be a subring of S
anymore).

Proof. Let S ∈ NilpA and F ∈ S[[X,Y ]] be a ?-deformation of Fh. By definition
there exists a nilpotent ideal I ⊆ S containing π such that

F ≡ Fh mod I.
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In particular, F has coefficients in the subring

S′ := k ×S/I S.
of elements in S reducing to some element in k ⊆ S/I. Note that S′ is a local
A-algebra with nilpotent maximal ideal k ×S/I I ∼= I containing π. In particular,
F lies in the image of

MFh(S′)→MFh(S).

and thus ηS is surjective as ηS′ is assumed to be surjective. Now assume that

g1, g2 ∈ Spf(A[[X1, . . . , Xh−1]])(S)

map to the same element in MFh(S). Let I ⊆ S be the ideal generated by
π,Xi, g1(Xi) − g2(Xh−1), i = 1, . . . , h − 1. Then I ⊆ S is nilpotent, and the com-
positions

A[[X1, . . . , Xh−1]]
gj−→ S → S/I

agree for j = 1, 2. Let again
S′ = k ×S/I S.

Then g1, g2 factor over morphisms

g′1, g
′
2 : A[[X1, . . . , Xh−1]]→ S′.

Using that ηS′ is injective, it suffices to see that the images of g′1, g
′
2 in MFh(S′)

agree. By Lemma 2.37

MFh(S′) ∼=MFh(k)×MFh
(S/I)MFh(S),

and both components of ηS′(g
′
1) = ηS′(g

′
2) agree. This finishes the proof. �

Let S be any ring, and let M be any S-module. Then we define the S-algebra

S[M ]

with underlying S-module S ⊕M and multiplication

(s,m)(s′,m′) := (ss′, sm′ + s′m)

for s, s′ ∈ S,m,m′ ∈M . Note M ⊆ S[M ] is an ideal with M2 = 0. We sometimes
will write S[M ] = S ⊕ εM with ε2 = 0.

Lemma 2.39. Let M be any k-module. Then the map

ηk[M ] : Spf(A[[X1, . . . , Xh−1]])(k[M ])→MFh(k[M ])

is a bijection.

Proof. The LHS is given by the set of continuous morphisms

f : A[[X1, . . . , Xh−1]]→ k[M ].

As M2 = 0, this set identifies with

Homk((X1, . . . , Xh−1)/(X1, . . . , Xh−1)2,M) ∼= Mh−1.

By Lemma 2.35MFh(k[M ]) identifies with the set of isomorphism classes of formal
A-modules F ∈ k[M ][[X,Y ]] lifting Fh in k. We now construct a natural map

θM : MFh(k[M ])→Mh−1

recording the v1, . . . , vh−1. Namely, let

F ∈MFh(k[M ])
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be a ?-deformation of Fh over k[M ]. As k is reduced, we can conclude that
F ⊗̂k[M ]k = Fh. Now set

θM (F ) := (v1, . . . , vh−1) ∈ (εM)h−1 ∼= Mh−1,

where vi is the coefficient of Xqi in [π]F (X). This is well-defined as

[π]Fh(X) ≡ 0 mod (X)q
h

and only depends on the ?-deformation class of F because if ϕ(X) ∈ k[M ][[X]] is a
power series with ϕ(X) ≡ X mod εM , we have

ϕ−1([π]F (ϕ(X)) ≡ [π]F mod (Xqh)

as follows from the facts that ε2 = 0, πεM = 0. It is clear that θM is natural in M .
By construction of η the composition

Mh−1 ∼= Homk((X1, . . . , Xh−1)/(X1, . . . , Xh−1)2,M)→MFh(k[M ])
θM−−→Mh−1

is the identity for any k-vector space. To prove the lemma it therefore suffices to
see that θM is injective. By Lemma 2.37 the functor

M 7→ MFh(k[M ])

commutes with finite products as k[M1⊕M2] ∼= k[M1]×k k[M2] for k-vector spaces
M1,M2. This implies that MFh(k[M ]) is naturally a k-module (as functors com-
muting with finite products preserve k-module objects) and that θM is a mor-
phism of k-module. In particular, it suffices to check that its kernel is trivial. If
F ∈ MFh(k[M ]) lies in the kernel of θM . Then by definition of θM the formal
A-module F is of (exact) height h. Let F0 = Fh ∈MFh(k[M ]) be the trivial defor-
mation of Fh. Lemma 2.40 implies that the functor on Fh lifts to an isomorphism
F ∼= F0. This proves that θM is injective as desired. �

We used the following lemma.

Lemma 2.40. Let R be a k-algebra and F1, F2 ∈ R[[X,Y ]] two formal A-modules
of height h ∈ Z≥1, and let I ⊆ R be a nilpotent ideal. Then each isomorphism
F1⊗̂RR/I ∼= F2⊗̂R/I admits a unique lift to an isomorphism F1 → F2.

Proof. It is clear that the functor

AlgR → (Sets), S 7→ IsomFGLA(R)(F1⊗̂RS, F2⊗̂RS)

is corepresentable by some R-algebra R′. By Lemma 2.28, Theorem 2.29 and
Lemma 2.31 there exists a faithfully flat ind-finite étale R-algebra S such that
the S-algebra S′ := R′ ⊗R S is formally étale over S, i.e.,

HomS(S′, T ) ∼= HomS(S′, T/J)

for any S-algebra T and J ⊆ T a nilpotent ideal (this boils down to the fact that

TFrob
qh

=Id = (T/J)Frob
qh

=Id by nilpotence of J). By faithfully flat descent we can
conclude that R′ is a formally étale R-algebra as desired. �

The conclusion of Theorem 2.34 is now a formal consequence of the following
general proposition. Let

CA
be the category of local A-algebras R with residue field k and nilpotent maximal
ideal (containing π).
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Proposition 2.41. Let G1, G2 : CA → (Sets) be two functors which satisfy the
Mayer-Vietoris property and are formally smooth. Then a natural transformation

η : G1 → G2

is an isomorphism if and only if ηk[M ] : G1(k[M ])→ G2(k[M ]) is a bijection for all
k-modules M .

By Lemma 2.37, Lemma 2.38 and Lemma 2.39 this implies Theorem 2.34.

Proof. For simplicity we assume that G1(k) = {∗} = G2(k) is a singleton. Let
R ∈ CA with maximal ideal mR. Let n ≥ 1 such that mnR = 0. If n = 0, we are
finished by assumption. By induction we may assume that ηS is a bijection for all
S ∈ CA such that mn−1

S = 0. Set J := mn−1
R . Then J ⊆ R is a square zero ideal

with mR · J = 0. This implies that

R×k k[J ] ∼= R×R/J R, (r, (a, j)) 7→ (r, r + j)

and more generally

R×k k[J ]×k . . .×k k[J ] ∼= R×R/J . . .×R/J R.
From the Mayer-Vietoris property we can deduce that

G1(R)×G1(k) . . .×G1(k) G1(k[J ]) ∼= G1(R)×G1(R/J) . . .×G1(R/J) G1(R).

This implies that the fibers of

G1(R)→ G1(R/J)

are principal homogeneous spaces under the group G1(k[J ]). The same discussion
applies for G2. By assumption

ηk[J] : G1(k[J ])→ G2(k[J ])

is an isomorphism. Using formal smoothness of G2 and induction we can conclude
that the diagram

G1(R)
ηR //

��

G2(R)

��
G1(R/J)

ηR/J // G2(R/J)

is cartesian. As by induction ηR/J is an isomorphism, we get that ηR is an isomor-
phism. �
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3. Formal schemes

Let A be a complete discrete valuation ring with finite residue field k and let
Fh ∈ k[[X,Y ]] be a formal A-module of height h ∈ Z≥1.

Our next aim is to construct the étale and surjective Gross-Hopkins period mor-
phism

πGH : MFh,η → Ph−1,ad
K

from the adic generic fiber of the Lubin-Tate space MFh,η, a rigid analytic open
unit ball over K := Frac(A), to the (adic) projective space of dimension h− 1. The
existence of πGH is quite surprising. Indeed, it is not just étale surjective, but an
infinite covering space (in a suitable sense). In complex geometry a map like πGH

can therefore not exist as the projective space is simply connected. To rigorously
present the construction of πGH we need a geometric framework incorporating rigid-

analytic spaces like Ph−1,ad
K and formal schemes like MFh . For this reason we aim

to discuss Huber’s category of adic spaces. As an introduction we discuss formal
schemes (a bit). This will lead to a different, useful viewpoint on formal A-modules
and Lubin-Tate spaces.

3.1. Formal schemes. Let us recall that there exist (at least) two viewpoints on
schemes. Namely,

(1) a scheme X is a locally ringed space, which locally is isomorphic to the
locally ringed space Spec(R) associated with some ring R,

(2) a scheme X is a (covariant) functor on rings, which locally agrees with the
functor corepresented by some ring R.

The first viewpoint is more geometric while the second is powerful for discussing
group schemes etc.. The link between both viewpoints is the Yoneda lemma.

We will now develop similar viewpoints on (affine) formal schemes.

Example 3.1. Recall the functor

N il : (AlgA)→ (Sets)

from Section 1.4. We saw that

N il(R) = HomA,cts(A[[X]], R),

where A[[X]] is considered as a topological A-algebra for its (X)-adic topology, and
R ∈ AlgA is given the discrete topology. More generally, consider any topological
A-algebra B. Then we obtain a functor

Spf(B) := HomA,cts(B,−) : (AlgA)→ (Sets)

sending R to the set of continuous A-algebra homomorphisms B → R with R
equipped with the discrete topology. This construction is too general, and we
should assume that B is linearly topologized, i.e., admits a fundamental system
Ij , j ∈ J, of neighborhoods of 0, which are ideals.

Note that in this case the functor HomA,cts(B,−) only depends on the completion

B̂ := B̂ := lim←−
j∈J

B/Ij

which is a complete ring when equipped with its inverse limit topology as

HomA,cts(B,−) ∼= HomA,cts(B̂,−).
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Indeed, if R is any A-algebra (equipped with the discrete topology) and f : B → B̂
the natural morphism, then precomposition by f induces a bijection

HomA,cts(B,R) ∼= HomA,cts(B̂, R)

as both sides evaluate to

lim−→
j

HomA(B/Ij , R)

by the definition of the topologies on B and B̂. We leave it as an exercise to check
that the functor HomA,cts(B,−) is corepresentable if and only if the topology on

B̂ is discrete.

Useful examples are the n-dimensional formal affine space over A, which

ÂnA := Spf(A[[X1, . . . , Xn]]),

or the formal multiplicative group over A

Ĝm,A := Spf(A[[T − 1]])

with A[[T − 1]] the (T − 1)-adic completion of A[T, T−1] (or A[T ]).
We want to single out the class of topological rings, which are relevant for formal

schemes.

Definition 3.2 ([Sta17, Tag 07E8]). Let R be a topological ring.

(1) R is called linearly topologized if 0 ∈ R has a basis of neighborhoods, which
are ideals.

(2) If R is linearly topologized, then an ideal I ⊆ R is called an ideal of defi-
nition, if I ⊆ R is open and every neighborhood of 0 contains In for some
n ≥ 0.

(3) R is called admissible if R is linearly topologized, contains an ideal of def-
inition and R is complete (i.e., as topological rings R ∼= lim←−

J

R/J , where J

is running through a fundamental system of open neighborhoods of 0, which
are ideals, and the RHS is equipped with the inverse limit topology).

(4) R is called adic if R is complete and its topology is I-adic for some ideal
I ⊆ R.

For example, R = R with its classical topology is not linearly topologized. Let

R = Z[X1, X2, . . .] ⊇ I := (X1, X2, . . .)

as in [Sta17, Tag 05JA]. Then the ring

R̂I = lim←−
n

R/In

(with its inverse limit topology) is admissible, but not adic (as is proven in [Sta17,
Tag 05JA]). In general, if R is any ring and I ⊆ R a finitely generated ideal, then

the inverse limit topology on R̂I is I · R̂I -adic and in particular, R̂I is I · R̂I -adically
complete, cf. [Sta17, Tag 05GG]. As a special case, we leave the following as an
exercise.

Exercise 3.3. Assume that R is a ring and π ∈ R a non-zero divisor. Let I := (π)

and n ≥ 0. Show that the image of π ∈ R̂I is a non-zero divisor, that πn · R̂I =
ker(R̂I → R/Iπ) and that R̂I is π-adically complete.
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The definition of an admissible ring traces back to Grothendieck’s definition of a
formal scheme, cf. [Sta17, Tag 0AHY] and certain generalizations of the definition
are possible, cf. [Sta17, Tag 0A16]. For us the most important case is that of an
adic ring containing a finitely generated ideal of definition. For an admissible ring
A let

AdmA

be the category of admissible A-algebras B (with A→ B continuous). Let us set

NilpA

as the category of continuous ring morphisms A → R with R discrete.10 The
morphisms in AdmA are by definition the continuous morphisms of A-algebras. If
B ∈ AdmA, then we have an equality

(10) Spf(B) = hBcts = lim−→
n≥0

hB/I
n

of functors (NilpA)→ (Sets). Indeed, the category Fun(AlgA, (Sets)) has all (small)
limits and colimits, and these are computed pointwise.

Lemma 3.4. The functor

Admop
A → Fun(NilpA, (Sets)), B 7→ Spf(B) = hBcts

is fully faithful.

Lemma 3.4 is an example of the Yoneda lemma for pro-objects.

Proof. Let B,B′ ∈ AdmA and let Ii ⊆ B′, i ∈ I, be a fundamental system of open
neighborhoods of 0, which are ideals in B′. Then we can calculate

HomFun(NilpA,(Sets))(h
B′

cts, h
B
cts)

∼=HomFun(NilpA,(Sets))(lim−→
j

hB
′/I′j , hBcts)

∼= lim←−
j

HomFun(NilpA,(Sets))(h
B′/I′j , hBcts)

∼= lim←−
j

HomA,cts(B,B
′/I ′j)

∼=HomA,cts(B,B
′)

using the Yoneda lemma and the fact the colimits of functors are computed point-
wise. �

At this point we did not use the assumption on the existence of an ideal of
definition. This assumption will be important when introducing the topological
space of a formal scheme, cf. Definition 3.10.

Exercise 3.5. A functor F : AlgA → (Sets) is called an fpqc-sheaf if for any faith-
fully flat morphism R→ S of A-algebras the morphism F (R)→ F (S) is an equal-
izer of the two natural morphisms p1, p2 : F (S)→ F (S ⊗R S). If B ∈ AdmA, then
hBcts is an fpqc-sheaf.

We can now finish our discussion about viewing formal group laws as group
structures on the functor N il, cf. Section 1.4.

10If A is a complete discrete valuation ring, this recovers the category NilpA of A-algebras R,

such that the uniformizers are nilpotent in R.
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Example 3.6. Let R be any ring and consider the functor

N il ∼= Spf(R[[X]]) : AlgR → (Sets).

By Lemma 3.4 we see that natural transformations of functors

η : N il→ N il
are in bijection to

HomR,cts(R[[X]], R[[X]]).

In general, HomR,cts(R[[X]], B) with B ∈ AdmR identifies with the set

B◦◦ := {b ∈ B | bn → 0, n→∞}
of topologically nilpotent elements in B. Now assume that B = R[[X]]. Then we
get

B◦◦ = {f(X) ∈ R[[X]] | f(0) ∈ N il(R)}.
Given f ∈ B◦◦ the induced natural transformation η preserves the zero section
0: Spec(R) → N il if and only if f(0) = 0. From here it is now clear (thanks
to Lemma 1.21) that formal group laws correspond bijectively to group structures
on the functor N il whose two sided unit is 0 : Spec(R) → N il. Note that the
restriction that 0 is a two sided unit for the group structure on N il is not serious
as we can translate any section s : Spec(R) → N il to the zero section. If A is a
discrete valuation ring with finite residue field, then we see similarly that formal
A-module( law)s F ∈ R[[X,Y ]] for R ∈ AlgA correspond bijectively to A-module
structures on the functor

N il : AlgR → (Sets),

whose additive unit is 0 ∈ N il.

An important way of constructing formal schemes is via completion of schemes
along (closed) subschemes. More generally, let A be any ring, let

X : AlgA → (Sets)

be a functor, and Y ⊆ X a subfunctor. Then we can define the formal completion

X̂Y

of X along Y as the subfunctor of X given by all s ∈ X(R), R ∈ AlgA, such
that there exists a nilpotent ideal I ⊆ R such that the image of s in X(R/I)
lies in Y (R/I). We leave it as an exercise to see that if R is any A-algebra and
I ⊆ R an ideal, then the formal completion of Spec(R) along its (closed) subscheme
Spec(R/I) is the formal affine scheme

Spf(R̂I) ⊆ Spec(R).

If X is a group valued functor, and Y a subgroup functor, then the formal com-
pletion is pointwise stable under the group structure, and hence again a group
valued functor. This generalizes Example 1.22. As a concrete example for a formal
completion assume R = Sym•AM for an A-module M , and set

A[[M ]]

as the admissible ring representing the formal completion of R at the ideal generated
by M . If M is a finite free A-module of rank n, then

Spf(A[[M ]]) ∼= Spf(A[[X1, . . . , Xn]])
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and if M is finite projective such an isomorphism exists locally on Spec(A), cf.
Lemma 3.7. Therefore we can call Spf(A[[M ]]) a formal vector bundle over A.
Note that for any R ∈ NilpA there exists a natural bijection between

Spf(A[[M ]])(R)

and the set

HomA(M,N il(R))

of A-linear homomorphisms M → N il(R). In particular, there exists the natural
zero section 0: Spf(A)→ Spf(A[[M ]]).

Let us now compute some fiber products of formal (affine) schemes.

Lemma 3.7. Let A→ R be a morphism of rings and M an A-module. Then

Spec(R)×Spec(A) Spf(A[[M ]]) ∼= Spf(R[[M ⊗A R]]).

Proof. Given an A-algebra S, then

Spf(A[[M ]])(S)

identifies with A-linear maps M → N il(S). Given now an R-algebra S, then
naturally in S

HomA(M,N il(S)) ∼= HomR(R⊗AM,N il(S)),

which proves the claim. �

In general,

Spf(R)×Spf(A) Spf(B) ∼= Spf(R⊗̂AB),

where R⊗̂AB is the completed tensor product of the admissible A-algebras R,B,
cf. [Gro60, §0.(7.7.6.)]. For example,

Spf(A[[M1]])×Spf(A) Spf(A[[M2]]) ∼= Spf(A[[M1 ⊗AM2]])

as can also be calculated by hand.

Exercise 3.8. Let A be a ring and let X : AlgA → (Sets) be a functor. Then
X ∼= Spf(A[[M ]]) for a finite projective A-module M if and only if the following
conditions are satisfied

(1) X ∼= Spf(B) for some admissible A-algebra B,
(2) X is formally smooth, cf. Definition 2.36,
(3) there exists a section s ∈ X(A) and X is the formal completion of X along

s,
(4) X commutes with filtered colimits in AlgA.

If these conditions are satisfied we call X a formal Lie variety over A.

The critical point in Exercise 3.8 is to find a candidate for the A-module M .
This works as follows: Recall that for an A-module N we defined the A-algebra

A[N ] = A⊕ εN
with ε2 = 0. If X = Spf(A[[M ]]) and s : Spec(A)→ X the zero section, then there
exists a natural isomorphism

HomA(M,N) ∼= X(A[N ])×X(A) {∗}
with {∗} → X(A) the unique map with image s ∈ X(A) = HomA(Spec(A), X)
and by the Yoneda lemma this characterizes M up to isomorphism. Given an
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isomorphism X ∼= Spf(B), and f : B → A the morphism corresponding to the
section s, then M ∼= I/I2 with I := ker(B → A).

Definition 3.9. With the above notation we call

TsX := X(A[A])×X(A) {∗} ∼= HomA(M,A)

the tangent space of X at s, and the rank of M the relative dimension of X over
A.

It is clear that the category of formal Lie varieties admits products. Let us now
introduce a locally (topologically) ringed space associated to an admissible ring A.
We set (abusing notation)

Spf(A)

as the set of open prime ideals in A (which can be much smaller than Spec(A)). If
I ⊆ A is an ideal of definition, then

Spf(A) ∼= Spec(A/I)

as each open prime ideal in A must contain I. In particular, the Zariski topology
on Spec(A/I) can be transported to Spf(A). One can check that this topology is
independet of the choice of I. More canonically, pick f ∈ A and set

D(f) ⊆ Spf(A)

as the subset of open prime ideals p ⊆ A with f /∈ p. The subsets D(f), f ∈
A, form then a basis for the previously constructed topology, and the topological
space Spf(A) is functorial in morphisms A → B of admissible rings. Given f ∈ A
there exists an admissible A-algebra A〈1/f〉 such that a morphism g : A → B of

admissible rings factors over A〈1/f〉 if and only if Spf(B)
Spf(g)−−−−→ Spf(A) factors

over D(f). More concretely, if

A ∼= lim←−
i∈J

A/Ii

for a fundamental system of open ideals of definition Ii ⊆ A, i ∈ J , then

A〈1/f〉 := lim←−
i∈J

A/Ii[1/f ].

In particular, A〈1/f〉 depends only on D(f) and we obtain a presheaf OSpf(A)

D(f) 7→ A〈1/f〉

of topological rings on (a basis of) Spf(A). Alternatively, OSpf(A) is the inverse
limit (in presheaves of topological rings) of the structure sheaves

OSpec(A/Ii)

on the topological spaces Spec(A/Ii) ∼= Spf(A). As limits of sheaves are again
sheaves, we see that OSpf(A) is a sheaf of topological rings on Spf(A). If A is discrete
this sheaf need not be a sheaf of discrete topological rings as infinite products/limits
of discrete topological spaces are not necessarily discrete. This subtle point is
usually not relevant.

Let us finish this subsection with the definition of a formal scheme.

Definition 3.10. A locally topologically ringed space (X,OX) is called a formal
scheme if it is locally isomorphic to (Spf(A),OSpf(A)) for some admissible ring A.
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We leave it as an exercise to check that for any formal scheme X over some
Spf(A) the functor

hX : NilpA → (Sets), R 7→ HomA(Spec(R), X)

is an fpqc-sheaf and that the functor

h : (Formal schemes over Spec(R))→ Fun(AlgA, (Sets))

is fully faithful.

3.2. Formal A-modules revisited. Assume that A is any ring.

Definition 3.11. Let R be an A-algebra.

(1) A (commutative, infinitesimal, formally smooth) formal group over R (of
topologically finite type) is a (commutative) group object G in the category of
formal Lie varieties over R. A morphism of formal groups is a morphism of
group objects. We denote by FGarb(R) the category of commutative formal
groups over R (of arbitrary relative dimension).

(2) For G ∈ FG(R) we call

Lie(G) := T0G,

with 0: Spec(R) → G the zero section, the Lie algebra of G. Clearly, the
Lie algebra is functorial in morphisms of formal groups.

(3) A formal A-module over R an A-module object (G, ι : A→ EndFGarb(R)(G)

in the category FGarb(R) of commutative formal groups over R such that
the action of A on Lie(G) coincides with the natural A-action coming from
R. More precisely, this means that the diagram

A
ι //

��

EndFGarb(R)(G)

��
R // EndModR(Lie(G))

commutes. A morphism of formal A-modules is a morphism of A-module
objects in FGarb(R). We denote by FGarb

A (R) the category of formal A-
modules (of arbitrary relative dimension).

Given a formal A-module (G, ι) we set

[a] := [a]Gι(a) : G → G

for a ∈ A. We let FG(R),FGA(R) be the categories of formal groups/formal A-
modules of relative dimension 1. These are the formal groups/formal A-modules
we are mostly interested in. In Section 1.4 we associated a formal A-module to
any formal A-module law, and similarly a morphism of formal A-modules to any
morphism of formal A-module laws. By Lemma 3.4 we can deduce that the resulting
functor

FGLA(R)→ FGA(R)

is fully faithful. Its essential image consists precisely of those formal A-module G
such that Lie(G) is a free A-module (of rank 1). In particular, each formal A-module
lies Zariski-locally on Spec(R) in the essential image.
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Assume from now on that A is a complete discrete valuation ring with finite
residue field k of characteristic p and cardinality q. We let K be the fraction field
of A.

Definition 3.12. Let R ∈ AlgA and G ∈ FGA(R). Then we call G a π-divisible
formal A-module if ker([π] : G → G) is represented by a finite, locally free scheme
over Spec(R).

Lemma 3.13. Let R ∈ AlgA and G ∈ FGA(R). The following conditions are
equivalent:

(1) G is a π-divisible formal A-module.
(2) The function

htG : Spec(R)→ Z≥0 ∪ {∞}, x 7→ ht(G ×Spec(R) Spec(k(x)))

is locally constant and takes values in Z≥0.

If these conditions are satisfied and htG is constant of value h we say that G is a
π-divisible formal A-module of height h.

Proof. We prove a more general statement in Lemma 3.15. �

For example, if R is a K-algebra, then [π] is invertible on G and each formal
A-module over R is π-divisible of height 0. As a consequence if R is an A-algebra
and G ∈ FGA(R) π-divisible of height h ≥ 1, then π must be nilpotent in R.

The following “rigidity of quasi-isogenies” between π-divisible formal A-modules
allows us to reinterpret the Lubin-Tate space as a moduli space of formal A-modules
in a quasi-isogeny class.

Lemma 3.14. Let R ∈ NilpA, I ⊆ R a nilpotent ideal and G1,G2 two π-divisible
formal A-modules over R. Then the map

HomFGA(R)(G1,G2)→ HomFGA(R/I)(G1⊗̂RR/I,G2,⊗̂RR/I)

is an injection of π-torsion free modules with cokernel πn-torsion for some n ≥ 1.

The injectivity can be deduced from Lemma 2.10.

Proof. We may assume that I2 = 0 and π · I = 0 and that G1,G2 arise from formal
A-module laws F1, F2. Let g ∈ R[[X]] be a power series with coefficients in I. Then
we can conclude that

[π]F2
(g(X)) = 0.

If g is moreover a morphism of formal A-modules, then

[π]F2(g(X)) = g([π]F1(X)) = 0,

which forces g = 0 as G1 is π-divisible. Assume now that f ∈ R[[X]] reduces to a
morphism of formal A-modules over R/I. Then we can conclude that

[π]F2
(f(F1(X,Y ))− F2(f(X), f(Y ))) = 0

as f(F1(X,Y ))− F2(f(X), f(Y )) has coefficients in I. We can write

0 = [π]F2
(f(F1(X,Y ))−F2(f(X), f(Y ))) = [π]F2

(f(F1(X,Y )))−[π]F2
(F2(f(X), f(Y )))+g(X,Y )
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with g(X,Y ) having coefficients in I. This implies that

[π2]F2(f(F1(X,Y )))

=[π]F2
([π]F2

(F2(f(X), f(Y ))) + g(X,Y ))

=[π]F2
([π]F2

(F2(f(X), f(Y )))) + πg(X,Y )

=F2([π2]F1(f(X)), [π2]F1(f(Y ))),

i.e., that [π2]F2 ◦ f(X) defines a morphism G1 → G2. �

Lemma 3.15. Let R ∈ AlgA and let f : G1 → G2 be a morphism. Then the
following conditions are equivalent:

(1) ker(f) is represented by a finite, locally free scheme over Spec(R),
(2) The height function ht(f) : Spec(R)→ Z≥0∪{∞} mapping x to ht(f⊗̂Rk(x))

is locally constant with value in Z≥1.

If these conditions are satisfied, we call f an isogeny.

Proof. After Zariski-localization on Spec(R) we may represent f via some pow-
erseries g ∈ R[[X]]. If R is a field, then we see moreover that

qht(f) = dimR(R[[X]]/(g)).

Assume that R is general. By the existence of fiber products in formal schemes,

ker(f) ∼= Spf(R[[X]]/(g)),

where (g) denotes the closure of (g). Under the first assumption, Spf(R[[X]]/(g)) ∼=
Spec(S) for some finite locally free R-algebra S. As the kernel commutes with base
change in R, we get that for each x ∈ Spec(R)

dimk(x)S ⊗R k(x) = qht(f).

But the LHS of this expression is locally constant.
For the converse direction, we may assume that ht(f) is constant of value h.

Then

g(X) = a0 + a1X + . . .+ aqhX
qh + . . .

with a0, . . . , aqh−1 nilpotent in R, and aqh ∈ R×. We leave as an exercise to check
that this implies that

R[[X]]/(g(X))

is free over R (on 1, X, . . . ,Xqh−1). This in turn implies that (g) = (g) and therefore

ker(f) ∼= Spec(R[[X]]/(g))

as desired. �

The second property in Lemma 3.15 implies that isogenies are stable under
composition.

The function ht(f) is always semicontinuous (its value may jump under special-
ization).

Lemma 3.16. Let R ∈ AlgA and f : G1 → G2 an isogeny of π-divisible formal
A-modules over R. Then there exists some n ≥ 1 and an isogeny g : G2 → G1 with

g ◦ f = [πn], f ◦ g = [πn].
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Proof. By Lemma 3.14 we may check this over R/I for some nilpotent ideal I ⊆ R.
As f is an isogeny we can conclude that the morphism

G1 → G2

is an epimorphism of fpqc-sheaves on AlgR (this only uses that R[[X]]/(f(X)) is
a finite, locally free faithfully flat R-algebra). In particular, G1/ker(f) ∼= G2. We
claim that there exists some n ≥ 1 such that

[π]n(ker(f)) = 0.

We may check this Zariski-locally on Spec(R) (as Spec(R) is quasi-compact), and
thus assume the Gi arises from some formal A-module law Fi ∈ R[[X,Y ]], i = 1, 2.
By Lemma 3.14 we may check this over R/I for some nilpotent ideal I ⊆ R. As
G1,G2 are π-divisible (necessarily of the same height) we may find some nilpotent
I ⊆ R such that F1, F2 are of exact height h (in the sense of definition Defini-
tion 2.24). By Lemma 2.28 we may assume, by passing to a faithfully flat ind-
étale R-algebra, that F1, F2 are normalized and hence by Theorem 2.29 isomor-
phic. By Lemma 2.31 we can then conclude that there exists some n ≥ 1 and
some g : G2 → G1 such that g ◦ f = [π]n, which proves our claim. Knowing that
[π]n(ker(f)) = 0 there exists some morphism g : G2 → G1 factoring [πn] : G1 → G1

into g ◦ f . Reducing modulo some nilpotent ideal, we may deduce that g is an
isogeny by Lemma 3.15. As f is an epimorphism for the fpqc-topology we can
deduce that f ◦ g = [π] as well because

f ◦ g ◦ f = f ◦ [πn] = [πn] ◦ f.

This finishes the proof. �

The converse of Lemma 3.16 holds true as well, if f, g are morphisms between
π-divisible formal A-modules satisfying f ◦g = [πn], then f, g are isogenies. Indeed,
by semicontinuity of ht(f),ht(g) we can deduce that both functions are actually
locally constant as the height function for πn is.

Definition 3.17. Let R ∈ NilpA. A quasi-isogeny f : G1 99K G2 of π-divisible
formal A-modules is an element of HomFGA(R)(G1,G2)⊗AK such that πn · f is an
isogeny for some n ≥ 1.

By Lemma 3.16 a quasi-isogeny is equivalently an isomorphism in the isogeny cat-
egory of π-divisible formal A-modules, i.e., in the category with objects π-divisible
formal A-modules and morphisms HomFGA(R)(G1,G2)⊗A K.

Given an isogeny f : G1 → G2 we get by Lemma 2.2 the function

htf : Spec(R)→ Z≥0, x 7→ ht(f⊗̂Rk(x) : G1⊗̂Rk(x)→ G2⊗̂Rk(x)),

which is locally constant and called the height of f . Given a quasi-isogeny f : G1 99K
G2 we define the locally constant function

htf = htπnf − htπn : Spec(R)→ Z

if n ≥ 1 satisfies that πn · f is an isogeny.
We can now present an alternative description of Lubin-Tate spaces. Fix a formal

A-module Gh of height h and some n ≥ 1. We define the functor

MRZ,Gh,n : NilpA → (Sets)
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which maps R ∈ NilpA to the set

MRZ,Gh,n(R)

of isomorphism class of pair (G, α) with G a π-divisible formal A-module over R
and

α : G⊗̂RR/π 99K Gh⊗̂kR/π
a quasi-isogeny of constant height n, and a morphism R→ S in NilpA to the natural
pullback morphism. The formal A-module Gh is associated with some formal A-
module law Fh ∈ k[[X,Y ]] of height h.

Proposition 3.18. The functors MFh ,MRZ,Gh,0 are naturally isomorphic.

The “RZ” is an abbreviation for Rapoport-Zink as the definition of MRZ,Gh,0 is
for A = Zp a particular case of a Rapoport-Zink space, cf. [RZ96].

Proof. Let R ∈ NilpA. Given a ?-deformation F ∈ R[[X,Y ]] of Fh let GF be the
associated formal A-module. By Lemma 3.14 we can lift the identity F ≡ Fh mod I
for the unspecified nilpotent ideal I ⊆ R to a quasi-isogeny

αF : G⊗̂RR/π 99K Gh⊗̂kR/π.
This quasi-isogeny has height 0 as the height of quasi-isogenies is invariant under
passage to quotients by nilpotent ideals. It is clear that we get a natural transfor-
mation

MFh →MRZ,Gh,0, F 7→ (GF , αF ).

Assume that (G, α) ∈MRZ,Gh,0(R). Then there exists a nilpotent ideal I ⊆ R such
that

α⊗̂RR/I : G⊗̂RR/I 99K Gh⊗̂kR/I
is an isomorphism. Indeed, assume that πnα = f is an isogeny. Then there exists a
nilpotent ideal I ∈ R containing π such that Zariski-locally on Spec(R) the isogeny
f can be represented by a power series whose coefficients before the first invertible
coefficient lie in I. As htα = 0 we can conclude by Lemma 2.2 that we can write
Zariski-locally f = [π]n ◦ g for some isomorphism

g : G⊗̂RR/I ∼= Gh⊗̂kR/I.
By uniqueness of g these local morphisms glue to the required isomorphism. In
particular, we can conclude (as I is nilpotent) that Lie(G) is free and therefore
G is associated to some formal A-module law F ∈ R[[X,Y ]]. Doing a coordinate
transform via some lift of the power series representing α, we can arrange that
F ≡ Fh mod I. This proves surjectivity of

MFh(R)→MRZ,Gh,0(R).

Injectivity follows from Lemma 3.14. �

Note that by passing to quasi-isogenies the unspecified nilpotent ideal in the
definition of MFh disappeared. From the viewpoint of Rapoport-Zink spaces it is
more natural to consider the space

MRZ,G ∼=
∐
n∈Z
MRZ,G,n,

which parametrizes formal A-modules G together with a quasi-isogeny

α : G⊗̂RR/π 99K Gh⊗̂kR/π
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of arbitrary height. Clearly, the full group of quasi-isogenies of Gh acts on MRZ,G
(and not just the isomorphisms).

3.3. Invariant differentials. We introduce now invariant differentials on formal
A-modules.

Let S be any ring. Given the formal scheme Z ∼= Spf(S[[X1, . . . , Xn]]) we define

its (continuous) de Rham complex Ω̂•Z/Spec(S) as the complex

OZ(Z) = S[[X1, . . . , Xn]]
d−→ Ω̂1

Z/Spec(S) :=

n⊕
i=1

S[[X1, . . . , Xn]]dXi
d−→ Ω̂2

Z/Spec(R) → . . . ,

where d denotes the exterior derivative of differentials. One checks that up to a
canonical isomorphism the terms of this complex and the differential do depend only
on Z and not the chosen isomorphism OZ(Z) ∼= S[[X1, . . . , Xn]]). In particular,
we can glue these local complexes in the case that Z ∼= Spf(S[[M ]])) is a formal
Lie variety with M ∼= T0Z a finite projective S-module. Given formal Lie varieties
Z1, Z2 and a morphism f : Z1 → Z2 of formal schemes over Spec(S) the pullback
of differentials defines a morphism

f∗ : Ω̂•Z2/Spec(S) → Ω̂•Z1/Spec(S)

of complexes.
Assume now that A is a complete discrete valuation ring with finite residue field

and that R = S is an A-algebra. Let G → Spec(R) be a (one-dimensional) formal
A-module. Let

m,pr1,pr2 : G ×Spec(R) G → G
be the multiplication resp. first and second projection. We call a differential

ω ∈ Ω1
G/Spec(R)

invariant if

m∗ω = pr∗1ω + pr∗2ω ∈ Ω̂1
G×Spec(R)G/Spec(R),

Let

ω(G) ⊆ Ω̂1
G/Spec(R)

be the R-submodule of invariant differentials. For example, the differentials

dX, resp.
dX

1 +X

on the formal Zp-modules Ĝa, resp. Ĝm are invariant.
Given a morphism f : G1 → G2 of formal A-modules and ω ∈ ω(G2), then f∗ω ∈

ω(G1) as is easily checked.

Lemma 3.19. The R-module ω(G) is locally free of rank 1, canonically isomorphic
to

Lie(G)∨ := HomR(Lie(G), R)

and OG(G) ⊗R ω(G) ∼= Ω̂1
G/Spec(R) via the natural morphism f ⊗ ω 7→ f · ω. If

ω ∈ ω(G) and a ∈ A, then [a]∗ω = aω.

Proof. First assume that G = GF for some formal A-module law F . Then we are
seeking

ω(X) = f(X)dX ∈ Ω̂1
G/Spec(R)
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such that

f(F (X,Y ))d(F (X,Y )) = f(X)dX + f(Y )dY.

The first equation is equivalent to

(11) f(F (X,Y ))
∂F

∂X
F (X,Y ) = f(X), f(F (X,Y ))

∂F

∂Y
F (X,Y ) = f(Y ).

Setting X = 0 in the first yields

f(Y )
∂F

∂X
(0, Y ) = f(0).

As ∂F
∂X (0, Y ) ≡ 1 mod (X,Y ) we get

f(Y ) =
f(0)

∂F
∂X (0, Y )

.

In particular, each invariant differential ω(X) = f(X)d(X) is determined by f(0).
Let us check that the differential

ωF :=
dX

∂F
∂X (0, X)

is invariant. Taking the Z-derivative of F (Z,F (X,Y )) = F (F (Z,X), Y ) yields

∂F

∂X
(Z,F (X,Y )) =

∂F

∂X
(F (Z,X), Y )

∂F

∂X
(Z,X).

Setting Z = 0 proves invariance of ωF . Let a ∈ A. As [a] : G → G is an endomor-
phism of the formal group G, the differentials

[a]∗ω = aω

are invariant. As [a](X) = aX mod (X2) the coefficients of dX agree for both.
Hence, both differentials have to be equal. The pairing

ω(G)× Lie(G)→ R, (ω = h(X)dX,ψ : (X)/(X)2 → R) 7→ ψ(h(X)X mod (X)2)

is A-linear and invariant under substituting X by some g(X) ∈ R[[X]] with g(0) =
0, g′(0) ∈ R×. We can conclude that both claims extend by Zariski glueing to
arbitrary formal A-modules over Spec(R). �

If G = GF for some formal A-module law F we note that the generator

1
∂F
∂X (0, X)

dX ∈ ω(G)

depends on F , and not just on G. Let K be the fraction field of A. Recall that
for any π-torsion free A-algebra R and G = GF the formal A-module associated
with some formal A-module law F ∈ R[[X,Y ]], there exists a unique series, the
“logarithm of F”,

logF (X) ∈ (R⊗A K)[[X]]

such that

logF (0) = 0, log′F (0) = 1, logF (F (X,Y )) = logF (X) + logF (Y ),

Lemma 2.23. In other words, logF defines an isomorphism of

G⊗̂R(R⊗A K) ∼= Ĝa,R⊗AK .
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As the differential dX is invariant on Ĝa, we can conclude that

log∗F (dX) = d(logF (X)) = log′F (X)dX =
1

∂F
∂X (0, X)

dX

by comparing the coefficient of dX. In particular,

log′F (X) =
1

∂F
∂X (0, X)

has coefficients in R.
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4. Adic spaces

Formal schemes are not enough for our purpose as (naively) we cannot take their
“generic fiber”. Let us mention a typical operation that we would like to do. Let
A be a complete discrete valuation ring, π ∈ A a uniformizer. Then we get

Spf(A) ⊆ Spec(A)

and the base change of Spec(A[T ]) along this morphism is corepresented by the
π-adic completion

A〈T 〉 := {f(T ) =

∞∑
i=0

∈ A[[T ]] | |ai| → 0, i→∞}

of A[T ]. Now the “rigid-analytic generic fiber” of Spf(A〈T 〉) should be corepre-
sented by the K := Frac(A)-algebra

K〈T 〉 := A〈T 〉 ⊗A K.

The ring K〈T 〉 is no longer admissible. For this reason we have to enlarge our test
category, and to discuss Huber rings.

4.1. Huber rings. We now introduce Huber rings, which form the building block
for Huber’s category of adic spaces. References for Huber rings etc. are [Hub93][Hub94],
[SW20], [Mor19].

Definition 4.1. A Huber ring is a topological ring A for which there exists an open
subring A0 ⊆ A whose subspace topology is I-adic for some finitely generated ideal
I ⊆ A0. Any such subring A0 is called a ring of definition.

The finite generation of I is important, e.g., to get that I-adic completions are
well-behaved, cf. [Sta17, Tag 05GG].

Example 4.2. Let us give examples of Huber rings.

(1) Any discrete ring A is Huber with any subring a ring of definition (with
I = {0}). This example relates to classical schemes.

(2) If A is any ring, I ⊆ A a finitely generated ideal, then A with its I-adic
topology is Huber. The example relates to formal schemes.

(3) Let A0 be any ring, g ∈ A0 a non-zero divisor and A := A0[1/g]. Then
we can make A into a topological group by requiring that {gnA0}n≥0 is a
fundamental system of open neighborhoods of 0. For this topology A is in
fact a topological ring as one checks that multiplication by g is continuous.
This example relates to rigid-analytic varieties.

(4) More concretely, let (K, | − |) be a non-archimedean valued field and let
(A, | − |) be a (non-archimedean) Banach algebra over K. Then

A0 := {a ∈ A | |a| ≤ 1}

is a subring. If there exists an element g ∈ K with 0 < |g| < 1, then the
subspace topology on A0 is (g)-adic and A = A0[1/g].

The following exercise yields the main example from rigid-analytic geometry.
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Exercise 4.3. Let K be a non-archimedean valued field with (multiplicative) val-
uation | − | : K → R≥0. Define

K〈T 〉 := {
∞∑
i=0

aiT
i | |ai| → 0, i→∞}.

Show that

|
∞∑
i=0

aiT
i| := max{|ai| | i ≥ 0}

is a norm on K〈T 〉, and that K〈T 〉 is complete for this norm.

Similarly, we can define the Tate algebra K〈T1, . . . , Tn〉 for n ≥ 1.

Definition 4.4. Let A be a topological ring. A subset S ⊆ A is called bounded if
for any open neighborhood U of 0 there exists an open neighborhood V of 0, such
that {v · s | v ∈ V, s ∈ S} ⊆ U .

For example, in Item 3 a subset S ⊆ A = A0[1/g] is bounded if and only if
S ⊆ 1/gnA0 for some n ≥ 0.

Lemma 4.5. Let A be a Huber ring, and A0 ⊆ A a subring. Then the following
are equivalent:

(1) A0 is a ring of definition,
(2) A0 is open in A and adic, i.e., its subspace topology is adic,
(3) A0 is open and bounded.

Proof. Clearly, 1) ⇒ 2). If A0 is open and adic, then there exists a fundamental
system of neighborhoods of 0 in A0, which are ideals. This implies boundedness of
A0. Thus, 2)⇒ 3). Let us prove 3)⇒ 1). Let B ⊆ A be ring of definition, and let
J = (π1, . . . , πn) ⊆ B be a finitely generated ideal of definition. Let

T := {π1, . . . , πn}.
For k ≥ 1 set

T (k) := {t1 · · · tk | ti ∈ T}.
Note that

Jk+1 = T (k) · J
for k ≥ 1. As A0 is open, there exists some k ≥ 1, such that

T (k) ⊆ Jk ⊆ A0.

Set
I := T (k) ·A0.

Take l ≥ 1, such that J l ⊆ A0. Then

In = T (nk)A0 ⊇ T (nk)J l = Jnk+l,

i.e., In ⊆ A0 is open. Let V ⊆ A0 be an open neighborhood of 0. Then there exists
some m ≥ 1, such that

JmkA0 ⊆ V
as A0 is bounded. Then

Im = T (mk)A0 ⊆ T (mk − 1)J ·A0 = JmkA0 ⊆ V,
which proves that the subspace topology on A0 is I-adic. As by construction I is
finitely generated, A0 is a ring of definition. �
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Definition 4.6. Let A be a Huber ring. Then an element a ∈ A is power bounded
if {an | n ≥ 0} ⊆ A is a bounded subset. We let

A◦ ⊆ A

be the subset of power bounded elements.

For example, if p is a prime and A = Qp[T ]/(T 2) (with ring of definition
Zp[T ]/(T 2) and ideal of definition (p)), then

A◦ = Zp + TQp.

Lemma 4.7. Let A be a Huber ring.

(1) The subset A◦ ⊆ A of power bounded elements is a subring.
(2) A◦ is the filtered union of all rings of definition A0 ⊆ A. In particular,

each ring of definition A0 ⊆ A is contained in A◦.

Proof. Clearly, each ring of definition A0 ⊆ A is contained in A◦ as A0 is bounded.
We first prove that if A0, A

′
0 ⊆ A are rings of definition, then the ring B := A0 ·A′0

generated by them is again a ring of definition. By Lemma 4.5 it suffices to see
that B is bounded. Let U ⊆ A be an open neighborhood of 0. By definition of an
Huber ring, we may assume that U is a subgroup. As A0, A

′
0 are bounded there

exist open neighborhoods V1, V2 ⊆ A, which are subgroups, such that

V1 ·A′0 ⊆ U

and

V2 ·A0 ⊆ V1.

We can conclude that

V2 ·B ⊆ V2 ·A0 ·A′0 ⊆ V1 ·A′0 ⊆ U,

which proves that B is bounded. The same argument with A′0 replaced by the
bounded set {xn}n≥0 for x ∈ A◦ implies that each power bounded element lies in
some ring of definition. This finishes the proof. �

Definition 4.8. Let A be a Huber ring. An element a ∈ A is called topologically
nilpotent if an → 0 for n→∞. We let

A◦◦ ⊆ A

be the subset of topologically nilpotent elements.

We leave it as an exercise to see that A◦◦ ⊆ A◦ is an ideal. If A0 ⊆ A is a ring
of definition with ideal of definition I ⊆ A0, then

√
I ⊆ A◦◦ and A◦◦ is the union

of those. In particular, A◦◦ ⊆ A is open.
Of particular importance are pseudo-uniformizers.

Definition 4.9. Let A be a Huber ring. A topologically nilpotent unit x ∈ A is
called a pseudo-uniformizer. A Huber ring possessing a pseudo-uniformizer is called
a Tate-Huber ring.

Note that x is invertible inA, but never in any ring of definition (exceptA = {0}).
For example, let A,A0, g be as in Item 3. Then A = A0[1/g] is Tate and g ∈ A a
pseudo-uniformizer.

Conversely, each Tate-Huber ring is of this form.
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Lemma 4.10. Let A be a Tate-Huber ring, and A0 ⊆ A a ring of definition. Let
x ∈ A be a pseudo-uniformizer. Then g := xn ∈ A0 for some n ≥ 0. Moreover, the
subspace topology in A0 is the (g)-adic topology and A = A0[1/g].

Proof. Let I ⊆ A0 be an ideal of definition. As I is an open neighborhood of 0
and xn → 0, n → ∞, we can conclude that xn ∈ I for some n ≥ 0. Choose such
an n and set g := xn. The multiplication by g is a homeomorphism on A. In
particular, g · A0 is open in A, and hence in A0 as gA0 ⊆ A0. In particular, there
exists some m ≥ 0 such that Im ⊆ gA0. As gA0 ⊆ I, we see that the I-adic and
(g)-adic topologies on A0 agree. Let us show that A = A0[1/g] and pick any a ∈ A
for this. As g is topologically nilpotent, we can conclude that gna→ 0, n→∞. In
particular, there exists n ≥ 0 such that

gna ∈ A0.

This proves that a ∈ A0[1/g] ⊆ A as desired. �

Let A be a discrete valuation ring with fraction field K and let π ∈ A be a
uniformizer. From Lemma 4.10 we can conclude that there exists no topology on

A[[T ]][1/π]

making A[[T ]] an open subring whose topology is (π, T )-adic.

Definition 4.11. Let A be a Huber ring. An open, integrally closed subring A+ ⊆ A
is called a ring of integral elements if A+ ⊆ A◦. A Huber pair is pair (A,A+) of a
Huber ring A and a subring A+ ⊆ A of integral elements. A morphism (A,A+)→
(B,B+) of Huber pairs is a continuous ring homomorphism A→ B sending A+ to
B+.

Lemma 4.12. Let A be a Huber ring. Then A◦ ⊆ A is a ring of integral elements.
Moreover, each ring of integral elements A+ ⊆ A contains A◦◦ and A+ 7→ A+/A◦◦

defines a bijection between ring of elements in A and integrally closed subrings of
A◦/A◦◦.

In particular, rings of integral elements exist in abundance.

Proof. We have to check that A◦ is integrally closed in A. But if x ∈ A satisfies

xn + a1x
n−1 + . . .+ an = 0

with a1, . . . , an ∈ A◦, then x is again power bounded, i.e., lies in A◦. Now let
A+ ⊆ A be any ring of integral elements, and x ∈ A◦◦. As A+ is open there exists
some n ≥ 0 such that xn ∈ A+. As A+ is integrally closed we can conclude that
x ∈ A+, i.e., A◦◦ ⊆ A+. Let D ⊆ A◦/A◦◦ be any subring with preimage B ⊆ A◦.
Then an element z ∈ A◦/A◦◦ is integral over D if and only if some preimage of it in
A◦ is integral over B (as one can adjust the constant term by an element in A◦◦).
This proves the last assertion. �

From Lemma 4.7 we can conclude that each ring of integral elements is the
filtered union of the rings of definition, which are contained in it. Lemma 4.12
implies that the an arbitrary intersection of rings of elements is again a ring of
integral elements.
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4.2. Valuation spectra. We want to associate a topological space of (continuous)
valuations

Spa(A,A+)

to any Huber pair (A,A+).

Definition 4.13. A totally ordered abelian group is an abelian group Γ together
with a total order ≤ on it such that for all a, b, c ∈ Γ with a ≤ b we have

a+ c ≤ b+ c.

Clearly, subgroups of totally ordered abelian groups with the induced order are
again totally ordered abelian groups, e.g., the trivial group {1}.

Example 4.14. Let us give examples of totally ordered abelian groups.

(1) (R,+) with its usual order is a totally ordered abelian group. The logarithm
and exponential define mutually inverse isomorphisms

(R,+) ∼= (R>0, ·)
of totally ordered abelian groups.

(2) Let I be any well-ordered set, e.g., I = {1, 2, . . . , n} with the natural order,
and Γi, i ∈ I, a family of totally ordered abelian groups (each written
multplicatively). Then the product∏

i∈I
Γi

admits the lexicographic order: Let a := (γi)i∈I , b := (γ′i)i∈I ∈
∏
i∈I

Γi be two

distinct elements and let i0 ∈ I be the minimal element such that γi 6= γ′i.
Then set a ≤ b if γi0 ≤ γi0 .

For a totally ordered abelian group Γ (written multiplicatively) we define the
totally ordered abelian monoid

Γ ∪ {0}
by setting γ · 0 := 0 and 0 < γ for γ ∈ Γ.

We now present a huge generalization of the definition of the (multiplicative)
valuations discussed in Section 1.2.

Definition 4.15. Let A be any ring. A (multiplicative) valuation on A is a map

| − | : A→ Γ ∪ {0}
with Γ some totally ordered abelian group such that

(1) |0| = 0, |1| = 1,
(2) |a · b| = |a| · |b|
(3) |a+ b| ≤ max{|a|, |b|}

for a, b ∈ A.

The support of a valuation | − | is the prime ideal

supp(| − |) := | − |−1({0}).
Two valuations

| − | : A→ Γ ∪ {0}, | − |′ : A→ Γ′ ∪ {0}
are equivalent if for all a, b ∈ A we have

|a| ≤ |b| if and only if |a|′ ≤ |b|′.
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Let us note that the same proof as in Lemma 1.4 works and thus each valuation
satisfies the strong triangle inequality

|a+ b| = max{|a|, |b|}

if |a| 6= |b| for a, b ∈ A. If A is a topological ring, then it makes sense to impose a
continuity condition on the valuations.

Definition 4.16. Let A be a topological ring. A valuation | − | : A → Γ ∪ {0} is
called continuous if for all a ∈ A with |a| 6= 0 the set

{b ∈ A | |b| < |a|}

is open in A.

We don’t demand ≤ as we want that trivial valuations (i.e., those with Γ = {1})
have open prime ideals as support. In general the support of a continuous valuation
is a closed prime ideal as it is an intersection of open, hence closed, subgroups. Note
that the condition of continuity only depends on the equivalence class of | − |.

Definition 4.17. Let (A,A+) be Huber pair. We set

Spa(A,A+)

as the set of equivalence classes of continuous valuations | − | : A → Γ ∪ {0} for Γ
some arbitrary totally ordered abelian group such that

|a| ≤ 1

for all a ∈ A+.

We will occasionally replace the A+ in Definition 4.17 by any subset S ⊆ A and
write

Spa(A,S)

for the equivalence classes of continuos valuations | − | : A → Γ ∪ {0} such that
|a| ≤ 1 for a ∈ S. We leave it as an exercise to see that Spa(A,S) = Spa(A,A+)
for A+ the smallest ring of integral elements in A, which contains S. We also use
the short notation Spa(A) for Spa(A,A◦), and

Spv(A,S)

for the Spa of the underlying discrete ring A with its subset S ⊆ A (which only
depends on the integral closed subring generated by S, which may not be open).

We will use the following convenient notation: If x ∈ Spa(A,A+) is the equiva-
lence class of the valuation | − | : A→ Γ ∪ {0}, then we write

|f(x)| := x(f) = |f | ∈ Γ ∪ {0}.

for f ∈ A.
We now define a topology on Spa(A,A+).

Definition 4.18. For f1, . . . , fn, g ∈ A set

U(
f1, . . . , fn

g
) := {x ∈ Spa(A,A+) | |fi(x)| ≤ |g(x)| 6= 0, i = 1, . . . , n}
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The colletion of subsets U( f1,...,fng ) ⊆ Spa(A,A+) for f1, . . . , fn, g ∈ A is stable

under intersections because

U(
f1, . . . , fn

g
) ∩ U(

f ′1, . . . , f
′
m

g′
) = U(

f1g
′, . . . , fng

′, f ′1g, . . . , f
′
mg

gg′
),

and hence they form the basis of a topology on Spa(A,A+). If ϕ : (A,A+) →
(B,B+) a morphism of Huber pairs, then

| − | 7→ | − | ◦ ϕ

defines a continuous map.

h : Spa(B,B+)→ Spa(A,A+)

Indeed,

h−1(U(
f1, . . . , fn

g
)) = U(

ϕ(f1), . . . , ϕ(fn)

ϕ(g)
)

for f1, . . . , fn, g ∈ B.
Before giving examples let us describe Spa(A,A+) via valuation rings. Given

x ∈ Spa(A,A+) with (equivalence class of the) valuation

| − | : A→ Γ ∪ {0}

let

k(x) := Frac(A/supp(| − |))
be the “residue field of Spa(A,A+) at x”. The valuation | − | extends naturally to
a valuation

| − |x : k(x)→ Γ ∪ {0},
and

k(x)+ := {a ∈ k(x) | |a|x ≤ 1}
is a valuation ring (with fraction field k(x)) in the sense of the following definition.

Definition 4.19. A valuation ring is an integral domain R such that for each
non-zero x ∈ K := Frac(R) we have x ∈ R or and x−1 ∈ R.

It is not difficult to see that if R is a valuation ring, then R is a local ring with
maximal ideal

mR := {x ∈ R | x = 0 or x−1 /∈ R}.
Moreover, each subring S ⊆ K containing R is again a valuation ring, equal to the
localization of R at the prime ideal mS ∩ R, and that the ideals in R are linearly
ordered. The last point characterizes valuation rings as those integral domains
whose set of ideals is linearly ordered via inclusion.

Valuation rings yield valuations.

Lemma 4.20. Let R be a valuation ring and K := Frac(R) its fraction field. Set
Γ := K×/R×. Let us write γ ≤ η for γ, η ∈ Γ if γ = xη for some x ∈ R. Then
(Γ,≤) is a totally ordered abelian group and the natural projection

| − | : K → Γ ∪ {0}

is a valuation whose associated valuation ring is R.

Proof. We leave the verification as an exercise. �
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If Γ is a totally ordered abelian group, then the group algebra Z[Γ] has the
natural (surjective) valuation

| − | : Z[Γ]→ Γ ∪ {0},
∑
γ∈Γ

aγγ 7→ sup{γ | aγ 6= 0}

and thus each totally ordered abelian group arises via Lemma 4.20.
From Lemma 4.20 it is easy to deduce that the ideals in a valuation ring are lin-

early ordered, the finitely generated ideals are principal, and moreover that radical
ideals in valuation rings are prime.

Given a valuation ring we call its Krull dimension the rank of the associated
valuation. If K is a field let us call a subring R ⊆ K a valuation subring of K if R
is a valuation ring with fraction field K.

As a corollary we get another description of Spa(A,S) for a discrete ring A and
a subset S ⊆ A.

Corollary 4.21. Let A be a (discrete) ring and S ⊆ A a subset. The map

x 7→ (supp(x), k(x)+)

defines a bijection from Spa(A,S) to the set of pairs

(p, R)

with p ⊆ A a prime ideal, R ⊆ k(p) := Frac(A/p) a valuation subring such that R
contains the image of S under A→ k(p).

Proof. This follows from Lemma 4.20. �

Phrased differently, the map

supp: Spa(A,S)→ Spec(A)

has fiber over p given by the set of valuation subrings in k(p) containing the image
of S. The map supp admits a section

s : Spec(A)→ Spa(A,S)

sending p to the trivial valuation A→ k(p)→ {1}∪{0} (or equivalently to the pair
(p, k(p))). Both maps supp, s are continuous. Indeed, if f, f1, . . . , fn, g ∈ A, then

supp−1(D(f)) = U(
0

f
)

and

s−1(U(
f1, . . . , fn

g
)) = D(g).

Usually the fibers of supp are huge, and exactly the Riemann-Zariski spaces

Spa(K,B)

for a (discrete) field K and a subring B ⊆ K. Note that for f1, . . . , fn, g ∈ K we
get that

U(
f1, . . . , fn

g
)

identifies with the set of valuation subrings R ⊆ K containing B[ f1g , . . . ,
fn
g ], i.e.,

U(
f1, . . . , fn

g
) = Spa(K,B[

f1

g
, . . . ,

fn
g

]).
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Example 4.22. Let us give some examples of adic spectra for discrete rings.

(1) By Ostrowski’s theorem

Spa(Q,Z) = {xQ, xp | p prime}

with xQ the trivial valuation on Q (corresponding to the valuation ring
Q ⊆ Q), and xp = | − |p : Q → R≥0 the (multplicative) p-adic norm (cor-
responding to the valuation subring Z(p) ⊆ Q). The topological space
Spa(Q,Z) is homeomorphic to Spec(Z).

(2) We can deduce

Spa(Q,Z) = {xQ, xp, xFp | p prime}

with xQ, xp as before and xFp the trivial valuation Z → Fp → {0, 1} (cor-
responding to the valuation ring Fp ⊆ Fp).

(3) Let R be a valuation ring with fraction field K. Then the map

ϕ : Spa(K,R)→ Spec(R), | − | 7→ {a ∈ R | |a| < 1}

is a homeomorphism. Indeed, as was mentioned after Definition 4.19 each
valuation subring S ⊆ K containing R is the localization Rp of R at the
prime ideal mS ⊆ R, and conversely each localization of R at a prime ideal
is a valuation ring. If p ⊆ R is a prime ideal and f ∈ R, then f /∈ p = pRp

if and only if f ∈ Rp and 1/f ∈ Rp. In particular, ϕ−1(D(f)) = U( f1 ) ∩
U( 1

f ) and ϕ is continuous. Conversely, let f, g ∈ R. If f/g ∈ R, then

U( fg ) = Spa(K,R) and ϕ(U( fg )) = Spec(R). If f/g /∈ R, then g/f ∈ R

and |g(x)| ≤ f(x)| 6= 0 for x ∈ Spa(K,R). This implies that U( fg ) =

U( fg ) ∩ U( gf ) = ϕ−1(D(g/f)).

(4) Let k be a field and K/k a field extension of finite transcendence degree.
Then by the valuative criterion for properness

Spa(K, k) ∼= lim←−
X/k

|X|

(as topological spaces) with the (cofiltered) inverse limit running over all
integral proper k-schemes X with generic point identified with Spec(K).
By the existence of blow-ups we see that Spa(K, k) is very huge if K has
transcendence degree ≥ 2. If trdeg(K/k) = 1, then Spa(K, k) ∼= |X| for
X the unique (up to isomorphism) normal, integral projective curve over k
with field of functions K.

(5) Let us describe a way to produce valuations of higher rank. For this, let R
be an arbitrary valuation ring with field of fractions K and residue field k.
Let

ϕ : R→ k

be the natural projection. The maps S 7→ ϕ(S) and B 7→ ϕ−1(B) define
mutually inverse bijections between the set of valuation subrings S ⊆ K
contained in R and the set Spa(k, {0}) of valuation subrings of k.

(6) Concretely consider a field L and set

R := L((x))[[t]] ⊆ K := L((x))((t)).
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Then B := L[[x]] ⊆ R/(t) is a valuation ring and

S = {
∞∑
i=0

ait
i ∈ R | a0 ∈ L[[x]]}

a valuation subring of rank 2 in K. The associated valuation can be de-
scribed as follows: Consider Γ = (1/2)Z ⊕ εZ with the lexicographic order
such that ε is infinitesimally less than 1. Then

K → Γ ∪ {0},
∑
i,j

ai,jx
itj 7→ max{(1/2)jεi | ai,j 6= 0}.

Let us rephrase the continuity of valuations in terms of valuation rings. For this
let us say that an element γ ∈ Γ ∪ {0} is cofinal, or topologically nilpotent, if for
any δ ∈ Γ there exists an n ≥ 1, such that γn < δ. For example, in the totally
ordered abelian group

Γ = (1/2)Z ⊕ εZ

appearing in Example 4.22 1/2 is cofinal, but ε not. Similarly, let us say that an
element in the fraction field K of a valuation ring R is cofinal, or topologically
nilpotent, if its class in K×/R× ∪ {0} is cofinal. Clearly, each cofinal element lies
in mR.

Lemma 4.23. Let (A,A+) be a Huber pair, let | − | : A→ Γ ∪ {0} be a valuation,
and let p := supp(| − |) be its support and R := k(| − |)+ ⊆ k(p) its associated
valuation ring. Assume that |a| ≤ 1 for a ∈ A+. Then | − | is continuous if and
only if the image of each b ∈ A◦◦ in k(p) is cofinal.

Proof. The “only if” statement is clear. For the converse, let a ∈ A with |a| 6= 0.
Let A0 ⊆ A be a ring of definition and I ⊆ A0 a finitely generated ideal of definition.
We may assume that A0 ⊆ A+, and thus in particular, |c| ≤ 1 for c ∈ A0. From this
and the fact that I is finitely generated and each b ∈ I maps to a cofinal element
in k(p), we deduce that there exists an n ≥ 1, such that In ⊆ {b ∈ A | |b| ≤ |a|}.
This finishes the proof. �

As the proof of Lemma 4.23 it suffices to show cofinality for generators b ∈ A◦◦
if an ideal of definition in some ring of definition A0 ⊆ A+.

Let us define a non-archimedean field as a complete non-discrete topological field
K whose topology is induced by a valuation | − |K : K → R≥0. We let

OK = K◦ = {x ∈ K | |x| ≤ 1}

be its ring of integers, which agrees with the power bounded elements in K.

Example 4.24. (1) Assume that K is a non-archimedean field and let K+ ⊆
K be an open and bounded valuation subring. Then the map

Spa(K,K+) ∼= Spec(K+/K◦◦), | − | 7→ {a ∈ K+ | |a| < 1}

is a homeomorphism. Indeed, this follows from Example 4.22 because a
valuation subring S ⊆ K defines a continuous valuation if and only if
K◦◦ ⊆ mS . In particular, if K+ = OK is of rank 1, then

Spa(K,OK) = {∗}

is a singleton.
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(2) Valuations A → Γ ∪ {0} with Γ = {1} the trivial group correspond bijec-
tively to the set of open prime ideal in A. In particular, if A is an adic ring
and I ⊆ A a finitely generated ideal of definition, then we see that

Spf(A) ⊆ Spa(A,A)

is naturally a subspace, which is closed (as it is the vanishing locus of A◦◦).
Moreover, the map

r : Spa(A,A)→ Spf(A), x 7→ {f ∈ A | |f(x)| < 1}

is a continuous retraction. Indeed,

r−1(D(g)) = {x ∈ Spa(A,A) | |g(x)| = 1} = {x ∈ Spa(A,A) | |g(x)| ≥ 1}.

(3) Let K be a non-archimedean field, OK its ring of integers, π ∈ K a pseudo-
uniformizer and | − | its valuation. Then consider

A := OK [[T ]]

with its (π, T )-adic topology. The space Spf(A) has one point given by the

open prime ideal
√

(π, T ). The space Spa(A,A) is much larger. Indeed, it
is the union of the closed subspace V (π) = {x ∈ Spa(A,A) | |π(x)| = 0},
which has two points, and the open complenent U( 0

π ). Given any z ∈ mK =
K◦◦, we get the valuation

OK [[T ]]→ R≥0, f 7→ |f(z)|,

where f(z) ∈ K denotes the evaluation of f at z ∈ K. Later we will see
that the “generic fiber of Spa(A,A)” is the open rigid-analytic unit disc
over K. This example is particularly interesting because of its relation to
the Lubin-Tate spaces.

4.3. The closed unit ball. Let K be an algebraically closed, non-archimedean
field and denote by

| − | : K → R≥0

its valuation. Let

OK := {x ∈ OK | |x| ≤ 1}
be its “unit ball”, or ring of integers. Let

K〈T 〉 := {
∞∑
i=0

xiT
i | xi ∈ K, |xi| → 0, i→∞}

be the Tate algebra over K. More or less by definition we have

K〈T 〉 ∼= (OK [T ])∧$[1/$],

where the RHS denotes the $-adic completion of OK [T ] for some $ ∈ C with
0 < |$| < 1.

We want to describe the adic space

BK := Spa(K〈T 〉,OK〈T 〉)

in detail. By definition BK is the space of (equivalence classes of) continuous
valuations

ν : K〈T 〉 → Γ ∪ {0},
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such that ν(x) ≤ 1 for x ∈ OC〈T 〉. Consider the Huber pair (K[T ],OK [T ]) such
that OK [T ] is a ring of definition carrying the $-adic topology. It is easy to see
that the natural morphism (K[T ],OK [T ])→ (K〈T 〉,OK〈T 〉) induces a bijection

BK ∼= Spa(K[T ],OK [T ])

because continuous valuations extend uniquely to the completion as the following
lemma shows.

If A is a Huber ring, let

Â := lim←−
U⊆A

A/U,

where U runs through the open subgroups of A. We may, by cofinality, assume
that U is an ideal in some fixed ring of definition A0 ⊆ A. The closure of the image

of A0 in Â is

Â0 := lim←−
U

A0/U,

i.e., the completion of A0 (for the I-adic topology for some finitely generated ideal

of definition I ⊆ A0). By [Sta17, Tag 05GG] the inverse limit topology on Â0 is

I · Â0-adic. Moreover, Â0 ⊆ Â is open. From here it is not difficult to see that the

multiplication on A extends uniquely to a continuous multiplication on Â, i.e., the

topological group Â is actually a ring, that it is complete and that it is Huber. If

A+ ⊆ A is an integral ring, then the integral closure of its topological closure in Â

is again a ring of integral Â+. We call (Â, Â+) the completion of (A,A+).

Lemma 4.25. Let (A,A+) be a Huber pair. Then the natural morphism

Spa(Â, Â+)→ Spa(A,A+)

is a homeomorphism.

Proof. Each continuous valuation ν : A → Γ ∪ {0} satisfying ν(a) ≤ 1 for a ∈ A+

extends uniquely to a valuation Â → Γ ∪ {0} which is ≤ 1 on Â+. This proves
bijectivity. The continuity of the inverse follows from Lemma 4.43. �

Let us start by describing the continuous rank 1 valuations

ν : K[T ]→ R≥0

with ν(x) ≤ 1 for x ∈ OK [T ]. We will always implicitly assume that ν extends the
valuation | − | on K. An important example is the valuation defining the “Gauss
point”, i.e., the valuation

ν0,1 : K[T ]→ R≥0, f =

n∑
i=0

xiT
i 7→ max

i
{|xi|}

(the notation will be clear later). More generally, we have the following examples
of valuations.

Lemma 4.26. Let c ∈ OK . For each r ∈ [0, 1] the function

νc,r : K[T ]→ R≥0, f =

n∑
i=0

xi(T − c)i 7→ max
i
{|xi|ri}

is a continuous valuation. Moreover,

νc,r(f) = sup{|f(x)| | x ∈ B(c, r)}
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for f ∈ K[T ], where

B(c, r) := {x ∈ K | |x− c| ≤ r}
is the “closed” ball of radius r centered at c ∈ K.

Proof. Except

νc,r(fg) = νc,r(f) + νc,r(g)

for f, g ∈ K[T ] all properties of a continuous valuation are easily verified. We
may assume c = 0 and show that ν0,r is a valuation. In particular, ν0,r satisfies
the strong triangle inequality. We may assume that f = T − a for some a ∈ K
by factoring f (here we use our assumption that K is algebraically closed). First,
assume that

ν0,r(a) = |a| 6= ν0,r(T ) = r.

Then

ν0,r(Tg) = rν0,r(g) 6= ν0,r(ag) = |a|ν0,r(g).

This implies

ν0,r((T−a)g) = max{r+ν0,r(g), |a|+ν0,r(g)} = max{r, |a|}+ν0,r(g) = ν0,r(T−a)+ν0,r(g)

by the strong inequality. The case r = |a| follows from this as the function

r ∈ [0, 1] 7→ ν0,r(h) ∈ R≥0

is continuous for any h ∈ K[T ]. Similarly the functions

f 7→ sup{|f(x)| | x ∈ B(0, r)}
for r ∈ [0, 1] are continuous valuations, i.e., satisfy multiplicativity. That they agree
with the ν0,r follows by equating both on T − a, a ∈ K. �

We can now classify the rank 1 points in BK .

Lemma 4.27. Let ν : K[T ]→ R≥0 be a continuous rank 1 valuation with ν(f) ≤ 1
for f ∈ OK [T ]. Then there exists a family B(xi, ri), i ∈ I, of nested discs with
xi ∈ OK , ri ∈ [0, 1], such that

ν(f) = inf
I
{νxi,ri(f)}.

Proof. We set I = OK , xi := i ∈ OK and ri = ν(T − xi) ∈ [0, 1]. If ri ≤ rj , then

B(xi, ri) ⊆ B(xj , rj).

Indeed, if a ∈ B(xi, ri), then

|a− xj | ≤ max{|a− xi|, |xi − xj |} ≤ max{|a− xi|, ν(T − xi), ν(T − xj)} = rj ,

i.e., the family B(xi, ri) consists of nested discs. Note that the disc B(xi, ri) depends
only on ri = ν(T − xi). Let y ∈ K and i ∈ I. If ν(T − y) > ri, then

|z − y| = max{ν(z − T ), ν(T − y)} = ν(T − y)

for z ∈ B(xi, ri) as by the above calculation ν(z − T ) ≤ ri. Thus,

ν(T − y) = νxi,ri(T − y).

If ν(T − y) ≤ ri, then B(y, ν(T − y)) ≤ B(xi, ri) and

ν(T − y) = sup
z∈B(y,ν(T−y))

{|z − y|} ≤ νxi,ri(T − y).

It suffices to test equality on the T − y, y ∈ K. This implies the claim. �
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Note that from the proof we see that

ν(f) = inf
y∈Bn,rn

{|f(y)|}

with discs
B1,r1 ⊇ B2,r2 ⊇ ...

for n ∈ N such that their radii rn are a decreasing sequence of elements in [0, 1].
With Lemma 4.27 proven, we can classify the rank 1 points on BK . They fall

into four types of points.

1) Assume that rn → 0, n → ∞ and
⋂
n
Bn,rn = {x} for some (necessarily

unique) x ∈ OK . Then ν is the valuation

νx,0 : K[T ]→ R≥0, f 7→ |f(x)|.
2) Assume that rn → r > 0, n→∞ with r ∈ |K×|. Then

ν = νx,r

for some x ∈ K.
3) Assume that rn → r > 0, n→∞ with r /∈ |K×| (such points can only exist

if K has not value group R>0). Then

ν = νx,r

for some x ∈ K.
4) Assume that rn → 0, n → ∞, but

⋂
n
Bn,rn = ∅ (this strange property can

happen if K is not so-called spherically complete). Then

ν = inf
n
{νxn,rn}

if Bn,rn = B(xn, rn).

For x ∈ OK define
fx : [0, 1]→ BK , r 7→ νx,r.

The map fx is not continuous as the open subsets in BK are defined via non-strict
inequalities. It is anticontinuous in the sense that the preimages of quasi-compact,
open subsets are closed.

Clearly,
fx(1) = ν0,1

is the Gauss point for all x ∈ OK . Thus, for each x ∈ OK we can draw an interval
from it to the Gauss point. Note that

νx,r = νy,r

if and only if
B(x, r) = B(y, r).

In other words, the functions fx, fy meet at r = |x − y| (the tree is “branching”).
Note that a branch point is of type 2). Let us now look at a type 4) point which is
given by a nested sequence of discs

B(x1, r1) ⊇ B(x2, r2) ⊇ . . .
with ri → 0, n→∞. Then we can picture it as the “dead end of the tree”, which is
given by first moving from the Gauss point fx1(1) to fx1(|x1− x2|), then switching
to the branch determined by x2 and move from fx1

(|x1 − x2|) = fx2
(|x1 − x2|) to

fx2
(|x2 − x3|), then switch to the branch determined by x3 and so on.
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We now classify the higher rank valuations on BK by relating them to the rank
1 points, which we already know. We use the following observation. Let (A,A+) be
a Tate-Huber pair (like (K[T ],OK [T ])) and let $ ∈ A a pseudo-uniformizer, i.e., a
topologically nilpotent unit in A. For each x ∈ Spa(A,A+) the image of $ ∈ k(x)+

is a non-zero, cofinal element. A valuation ring R possessing a non-zero, cofinal
element is called microbial.

Lemma 4.28. Let R be a microbial valuation ring, and $ ∈ R a non-zero cofinal
element. Then

p :=
√

($)

is a prime ideal, which is the unique prime ideal of R of height 1.

Proof. As radical ideals in valuation rings are prime, p is a prime ideal. Assume
that

{0} ( q

is a prime ideal. We claim that p ⊆ q. Let x ∈ q \ {0}. As $ is cofinal, there exists
some n ≥ 1, such that $n ∈ (x). In particular,

p =
√

($) ⊆
√

(x) ⊆ q

as desired. �

In particular, Rp ⊆ K := Frac(R) is a valuation ring of rank 1.

Exercise 4.29. Let T be a valuation ring of Krull dimension 1 with fraction field
L. Show that there exists an injection

L×/T× → R>0

of totally ordered abelian groups.

Note that Rp defines another continuous valuation of A and this point x̃ of
Spa(A,A+) is the unique rank 1 generalization of x ∈ Spa(A,A+) whose residue
field is k(x). In fact, this condition is automatic.

Lemma 4.30. Let (A,A+) be a Tate-Huber pair and z, y ∈ Spa(A,A+) be two
points such that y is a specialization of z. Then

k(y) = k(z),

i.e., specializations in Spa(A,A+) only happen in the fibers of Spa(A,A+)→ Spec(A).

Proof. Assume that k(y) 6= k(z). As Spa(A,A+)→ Spec(A) is continuous and thus
preserves specializations, we can conclude that there exists some f ∈ A such that
f(y) = 0 ∈ k(y) and f(z) 6= 0 ∈ k(z). Let $ ∈ A be a pseudo-uniformizer. Then
we know that

|$n(z)| ≤ |f(z)|
for some n ≥ 1. In particular, z ∈ U($

n

f ). On the other hand, y /∈ U($
n

f ) as

|$n(y)| 6= 0 because $ is a unit in A. This shows that y is not a specialization of
z, which is a contradiction. �

Given x̃ we can find back x via Example 4.22. Indeed by Lemma 4.30 and
Lemma 4.23 the y ∈ Spa(A,A+), which are a specialization of x̃ are in bijection
with valuation subrings S ⊆ k(x̃) contained in k(x̃)+, which contain the image of
A+. This set is by Example 4.22 in bijection with

Spa(κ(x̃), A+
x̃ ),
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where κ(x̃) is the residue field of the local ring k(x̃)+ and A+
x̃ the image of A+

under the composition
A+ → k(x̃)+ → κ(x̃).

Let us come back to BK = Spa(A,A+) with A = K[T ], A+ = K[T ], and calculate
the specialization for all rank 1 points x ∈ BK . We denote by κ the residue field of
OK .

1) Let c ∈ OK . Then x := νc,0 has residue field K ∼= K[T ]/(T − c). As OK
is of rank 1, the point νc,0 does not admit any specialization. In this case,
κ(x) = A+

x = κ.
2) Let c ∈ OK , and r ∈ (0, 1] ∩ |K×|. Let us first assume that r = 1, i.e.,

x := νc,1 is the Gauss point. In this case,

κ(x) = κ(T ), A+
x = κ[T ].

Therefore,
Spa(κ(x), A+

x ) ∼= A1
κ(κ).

If r < 1, then (κ(x), A+
x ) = (κ(T ′), κ) where T ′ = T

c with |c| = r. Indeed,

B(x, r) = Spa(K〈T/c〉,OK〈T/c〉),
but the relevant A+

x is not the image of OK〈T/c〉 but of OK [T ]. But
νx,r(T ) = r < 1, i.e., the image of OK [T ] in k is just κ as claimed. Thus,

Spa(κ(x), A+
x ) ∼= P1

κ(κ)

in this case.
3),4) In these cases the point becomes a point of type 2) over some extension K ′

of K (which can assumed to have the same residue field κ) and using the
case 2) one checks that the relevant pair is (κ(x), A+

x ) = (κ, κ). Thus there
are no non-trivial specializations of these points.

The points on BK corresponding to valuations of rank > 1 are called of type 5).
Concretely, if Γ = γZ × R>0 with γ infinitesimally less than 1, then the specializa-
tions of the point νx,r are given by

f =

∞∑
i=0

xi(T − a)i 7→ max
i
{|xi|(rγ)i}

for |a− x| = r, and, if r < 1, the point

f =

∞∑
i=0

xi(T − a)i 7→ max
i
{|xi|(rγ)−i}

for |a− x| = r (for r = 1 this valuation does not satisfy that it takes value ≤ 1 on
OK [T ]). From the above we now finished the classification of points on BK .

4.4. Spa(A,A+) is a spectral space. In this section we want to prove that the
topological space

Spa(A,A+)

of continuous valuations for a Huber pair is a spectral space. Let us define what
this means.

Definition 4.31. A topological space X is spectral if it is quasi-compact, has a
basis of quasi-compact open subsets, which is stable under finite intersections, and
every irreducible closed subset admits a unique generic point.
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The typical example of a spectral space is the spectrum Spec(R) for some ring R.
Here, the required basis for the topology is given by the sets D(f) with f ∈ R. Up
to homeomorphism each spectral space is of this form. In fact we have the following
characterization of spectral spaces. Recall that topological space X is called T0 if
for any x, y ∈ X distinct there exists an open subset U ⊆ X such that x ∈ U and
y /∈ U or y ∈ U and x /∈ U .

Theorem 4.32 (Hoechster, cf. [Sta17, Tag 08YF]). Let X be a topological space.
The following conditions are equivalent:

(1) X is a spectral space,
(2) X is homeomorphic to Spec(R) for some ring R,
(3) X is the topological inverse limit of finite T0-spaces.

A morphism f : Y → X of spectral spaces is called spectral if it is quasi-compact,
i.e., f−1(U) ⊆ Y is quasi-compact open if U ⊆ X is quasi-compact and open.

We will need the following statements, which describe valuations via their divis-
ibility relation.

Lemma 4.33. Let R be a ring, ν : R→ Γ∪{0} a valuation and | the binary relation

a|b := ν(a) ≤ ν(b)

for a, b ∈ R. Then | depends only on the equivalence class of ν and satisfies

(1) a|b or b|a,
(2) if a|b and b|c, then a|c,
(3) if a|b and a|c, then a|b+ c,
(4) if a|b, then ac|bc,
(5) if ac|bc and 0 - c, then a|b,
(6) 0 - 1

for a, b, c ∈ R. Conversely, each binary relations on R satisfying these equations
arises from some unique equivalence class of valuations.

Proof. This is clear except that a binary relation satisfying these equations defines
a unique equivalence of class of valuations on R. Let M be the set of equivalences
for the relation

a ' b if and only if a|b and b|a,
and for a ∈ R let [a] ∈M be its equivalence class. The multiplication on R defines
the commutative monoid structure

[a] · [b] := [ab]

on M . If [a], [b] 6= 0, then [ab] 6= 0 and thus M \ {0} is a monoid (with unit 1) as
well. Moreover, in M \ {0} multiplication is cancelable. Set

[a] ≤ [b] if b|a.
Then M \ {0} is a totally ordered abelian monoid, and its group completion Γ is a
totally ordered abelian group. The map

R→ Γ ∪ {0}, a 7→ [a]

defines the desired valuation. �

Lemma 4.34. Let (A,A+) be a Huber pairs. Then each closed irreducible subset
of Spa(A,A+) contains a unique generic point.
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Proof. We first show that Spa(A,A+) is T0, which implies that generic points are
unique (if they exist). If x, y ∈ Spa(A,A+) are distinct valuations, then (up to
permuting x, y) by the definition of equivalence of valuations there exists f, g ∈ A
with

|f(x)| ≤ |g(x)|,
but

|f(y)| > |g(y)|.
If g(x) 6= 0, then U( fg ) is open and contains x, but not y. If g(x) = 0, then f(x) = 0

and U( 0
f ) contains y but not x. Let Z ⊆ Spa(A,A+) be a closed irreducible subset.

We use Lemma 4.33 and define the binary relation | on A by requiring that

a|b

for a, b ∈ A if Z ⊆ V (b) ∩ V (a) or U( ba ) ∪ Z 6= ∅, where

V (c) = Spa(A,A+) \ U(
0

c
)

is the vanishing locus of some c ∈ A. It is easy but tedious to see that | satisfies the
assumptions of Lemma 4.33, and thus defines a continuous valuation ν : A→ Γ∪{0}.
The irreducibilty of Z is needed to ensure that two open non-empty open subsets
have non-empty intersection. �

Let us now introduce the desired basis of quasi-compact open subsets. Here the
following subtelty arises: for f1, . . . , fn, g ∈ A the open subset U( f1,...,fng ) need not

be quasi-compact. For example, if A = K〈T 〉 for a non-archimedean field K, then

U(
0

T
) = BK \ {0} ⊆ BK = Spa(K〈T 〉,OK〈T 〉)

is the punctured closed unit disc, which is not quasi-compact (in particular, the
inclusion Spa(A,A+)→ Spv(A,A+) is not spectral in general).

To circumvent this problem we introduce rational open subsets. Namely, we call
the distinguished open subset

U(
f1, . . . , fn

g
) ⊆ Spa(A,A+)

a rational open subset if f1, . . . , fn generate an open ideal of A.

Proposition 4.35. Let (A,A+) be a Huber pair, let f1, . . . , fn, g ∈ A such that
f1, . . . , fn ∈ A generate an open ideal in A. Then

U(
f1, . . . , fn

g
) ∼= Spa(B,B+)

(as topological spaces) for a Huber pair (B,B+).

The Huber pair (B,B+) constructed in the proof depends on f1, . . . , fn, g ∈ A,

but we will see in Proposition 4.46 that its completion only depends on U( f1,...,fng ).

Proof. If A is discrete it is clear that

U(
f1, . . . , fn

g
) ∼= Spv(A[

1

g
], A+[

f1, . . . , fn
g

])
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(as sets) because any valuation ν : A→ Γ ∪ {0} with ν(g) 6= 0 extends uniquely to
the localization A[ 1

g ], and the condition

ν(fi) ≤ ν(g) 6= 0

is equivalent to ν( fig ) ≤ 1. Clearing denominators of elements in A[1/g] shows that

U(
f1, . . . , fn

g
) ∼= Spv(A[

1

g
], A+[

f1, . . . , fn
g

])

as topological spaces. Thus, we have to endow A[ 1
g ] with a ring topology T making

A[1/g] into a Huber ring such that some point

x ∈ Spv(A[
1

g
], A+[

f1, . . . , fn
g

])

restricts to a continuous valuation on A along A → A[1/g] if and only if x is
continuous. Let A0 ⊆ A be a ring of definition with finitely generated ideal of
definition I ⊆ A0. Set

B0 := A0[
f1

g
, . . . ,

fn
g

] ⊆ B := A[1/g]

and equip B0 with the J := I ·B-adic topology. We equip B with the unique topol-
ogy making B into a topological group such that the Jn, n ≥ 0, form a fundamental
system of neighborhoods of 0. We have to see that B is a topological ring, i.e., that
the multiplication B×B → B is continuous. It suffices to show that for each h ∈ B
the multiplication by h is continuous. This is clear for elements in the image of
A → B. Hence, it suffices to prove that multiplication by 1/g is continuous on B.
We need to to see that

f1I
l + . . .+ fnI

l ⊆ A
is open for any l ≥ 1. Because granting this, there exists some m ≥ 1 such that

Im ⊆ f1I
l + . . .+ fnI

l,

which implies

1/gIm ⊆ f1

g
I l + . . .+

fn
g
I l ⊆ I l ·A0[

f1

g
, . . . ,

fn
g

] = J l,

thus 1/g · Jm ⊆ J l and therefore continuity of multiplication by 1/g. Let T :=
{f1, . . . , fn}. By assumption the set

T ·A = f1A+ . . .+ fnA

is open in A. Let k ≥ 1 such that Ik ⊆ T · A. Replacing I by Ik we may assume
that I ⊆ T · A. Let S ⊆ I be a finite set of generators and V ⊆ A finite such that
S ⊆ T · V . As each finite set is bounded there exists m ≥ 1 such that V · Im ⊆ I l.
Now

Im+1 = S · Im ⊆ T · V · Im ⊆ T · I l

proves that T · I l is open as desired. �

As rings/ideals of definition are cofinal the topology introduced on B in the proof
of Proposition 4.35 does not depend on the choice of A0, I.

Lemma 4.36. Let (A,A+) be a Huber pair. The rational open subsets form a basis
for the topology on A, stable under finite intersections.
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Proof. Let f1, . . . , fn = g, g, f ′1, . . . , f
′
m = g′, g′ ∈ A such that

(f1, . . . , fn)A, (f
′
1, . . . , f

′
m)A ⊆ A

are open. We have

U(
f1, . . . , fn

g
) ∩ U(

f ′1, . . . , f
′
m

g′
) = U(

f1f
′
1, . . . , fnf

′
m

gg′
),

and the ideal

(f1f
′
1, . . . , fnf

′
m)A =⊆ (f1, . . . , fn)A · (f ′1, . . . , f ′m)A

is open. This proves that the rational open subsets are closed under intersection.
Fix a ring of definition A0 ⊆ A and a finitely generated ideal of definition I =
(π1, . . . , πn) ⊆ A0. If f, g ∈ A are arbitrary, then

U(
f

g
) =

⋃
m≥1

U(
f, πm1 , . . . , π

m
n

g
)

by continuity of valuations, and

(f, πm1 , . . . , π
m
n )A

is open. This proves that the rational open subsets are a basis for the topology. �

We want to present the following theorem of Huber, cf. [Hub93, Theorem 3.1.].

Theorem 4.37. Let (A,A+) be a Huber pair. The topological space Spa(A,A+)
is spectral, and its rational open subsets are a basis for the topology consisting of
quasi-compact open subsets, which is stable under intersections.

Proof. By Lemma 4.36, Proposition 4.35, Lemma 4.34 it suffices to see that Spa(A,A+)
is quasi-compact. This will be proved in Proposition 4.42. �

To finish the argument we introduce the constructible topology on spectral
spaces.

Definition 4.38. Let X be a spectral space. Then the constructible topology on X
is the topology generated by U and X \ U for U ⊆ X quasi-compact and open. We
let Xcons be X equipped with its constructible topology.

Clearly, there exists a natural morphism

Xcons → X

and a spectral morphism f : Y → X of spectral spaces induces a continuous mor-
phism fcons : Ycons → Xcons. When

X ∼= lim←−
i

Xi

with Xi finite T0, then Xcons
∼= lim←−

i

Xi,disc and in particular, Xcons is profinite.

From here it is not difficult to deduce that if Z ⊆ X is closed in the constructible
topology, i.e., “pro-constructible”, then Z with the subspace topology on X is a
spectral space.

For more details, see [Sta17, Tag 08YF].
To prove the missing quasi-compacity of Spa(A,A+) we construct now a contin-

uous retraction r : Spv(A,A+)cons → Spa(A,A+), where

Spv(A,A+)cons
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is (a posteriori) the spectral space Spv(A,A+) with its constructible topology (but
beware that we don’t know yet that Spv(A,A+) is spectral). Let A0 ⊆ A+ be a ring
of definition and I ⊆ A0 a finitely generated ideal of definition. For x ∈ Spv(A,A+)
let

Rx := k(x)+ ⊆ k(x)

be the associated valuation ring, and

ϕx : A+ → Rx

the natural morphism. We set

Rx := Rx/(
⋂
n≥1

ϕx(I)n).

By Lemma 4.39 the elements in I map to cofinal elements in the valuation ring Rx.
By Lemma 4.23 this implies that the morphism

A+ → Rx → Rx

defines a continuous valuation on A+.

Lemma 4.39. Let S be a valuation ring, and J ⊆ S a finitely generated ideal.
Then p :=

⋂
n≥1

Jn ⊆ S is a prime ideal, S := S/p is a valuation ring, each j ∈ J

maps to a cofinal element in S and S is the largest quotient of S with this property.

Proof. The ideal J is principal, say J = (s). It suffices to see that p is a radical
ideal, but if ν : S → Γ ∪ {0} is the valuation of S, and f ∈ S,m ≥ 1, with fm ∈ p,
then ν(f) ≤ ν(sn) for all n ≥ 1 as

mν(f) = ν(fm) ≤ ν(sm+n) = m ≤ ν(sn).

Quotients of valuation rings, which are integral domains are again valuation rings
as their ideals are linearly ordered, cf. Definition 4.19. The cofinality of s in S is
clear and also that S is the largest quotient having this property. �

We need to extend the continuous valuation

νx : A+ → Γx ∪ {0}

associated with the morphism

A+ → Rx

to a continuous valuation on A. If |π(x)| = 0 for all π ∈ I, then Rx = Rx and
nothing has to be done. Otherwise, νx extends uniquely to a continuous valuation
on A as the next lemma shows.

Lemma 4.40. Let ν : A+ → Γ ∪ {0} be a continuous valuation, and assume that
there exists some π ∈ A◦◦ such that ν(π) 6= 0. Then ν extends uniquely to a
valuation on A.

Proof. For each a ∈ A there exists some n ≥ 1 such that πna ∈ A+. The unique
extension of π is then given by

a 7→ ν(π)−nν(πna).

�
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Altogether we constructed for each x ∈ Spv(A,A+) an element

(12) r(x) ∈ Spa(A,A+).

We denote by Spv(A,A+)cons the set Spv(A,A+) equipped with the “constructible”
topology for which the sets

U(
f1, . . . , fn

g
)

for f1, . . . , fn, g ∈ A are open and closed. The next lemma finishes the case that A
is discrete.

Lemma 4.41. The space Spv(A,A+)cons is profinite, and thus in particular quasi-
compact.

Proof. For x ∈ Spv(A,A+)cons let |x the associated binary relation

a|xb if and only if |a(x)| ≥ |b(x)|

on A. By definition a binary relation on A is a subset of A × A. Let P(A × A) ∼=∏
A×A
{0, 1} be the power set of A×, which is naturally a profinite set. By Lemma 4.33

the map

ι : Spv(A,A+)cons → P(A×A), x 7→ |x
is a closed embedding. Indeed, for f, g ∈ A let πf,g : P(A × A) → {0, 1} be the

projection on the (f, g)-component. Then π−1
f,g(1) identifies with binary relations |

on A satisfying f |g. Let f, g ∈ A. Then the set

ι−1(π−1
g,f (1)) ⊆ Spv(A,A+)cons

is open as it is the union of the open sets

U(
f

g
), Spv(A,A+)cons \ U(

0

g
) ∩ Spv(A,A+)cons \ U(

0

f
).

Given f, g ∈ A we see that

U(
f

g
) = ι−1(π−1

g,f (1) \ π−1
0,g(1)).

This implies that Spv(A,A+)cons carries the subspace topology of P(A× A). The
set of binary relations | satisfying that for all f, g ∈ A we have f |g or f |g is therefore
the closed subset ⋃

f,g∈A

[π−1
f,g(1) ∪ (π−1

f,g(0) ∩ π−1
g,f (1))],

and similarly for the other equations from Lemma 4.33. In particular, the image of
ι is closed and hence Spv(A,A+)cons is profinite. �

The next proposition finishes the proof of Theorem 4.37.

Proposition 4.42. The map

r : Spv(A,A+)cons → Spa(A,A+)

constructed in (Equation (12)) is continuous. In particular, Spa(A,A+) is quasi-
compact.
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Proof. By Lemma 4.36 it suffices to show that r−1(U) is open for every rational
open subset U ⊆ Spa(A,A+). Let f1, . . . , fn, g ∈ A such that (f1, . . . , fn)A ⊆ A is
open. Then

r−1(USpa(A,A+)(
f1, . . . , fn

g
)) = USpv(A,A+)(

f1, . . . , fn
g

),

where the subscript is added for clarifying where we consider the distinguished open
subset. The map r is natural with respect to the morphism (A,A+) → (B,B+)
constructed in Proposition 4.35. This implies that

r(USpv(A,A+)(
f1, . . . , fn

g
)) ⊆ USpa(A,A+)(

f1, . . . , fn
g

).

Conversely, assume that x ∈ r−1(USpa(A,A+)(
f1,...,fn

g )). Then

x ∈ {y ∈ Spv(A,A+) | |fi(y)| ≤ |g(y)|, i = 1, . . . , n}
and we have to show that g(x) 6= 0. Let I ⊆ A0 be an ideal of definition in a ring
of definition of A. If g(x) = 0, then π(x) = 0 for all πinI as (f1, . . . , fn)A is open.
In particular, r(x) = x, and thus g(x) 6= 0, which is a contradiction. Hence, r is
continuous. By Lemma 4.23 the map r is a retraction for the inclusion

Spa(A,A+)→ Spv(A,A+),

in particular, we can deduce from Lemma 4.41 that Spa(A,A+) is quasi-compact.
�

We mention the following compatibility of rational open subsets under comple-
tions.

Lemma 4.43. Let (A,A+) be a Huber pair. Then the natural map (a bijection by
Lemma 4.25)

Spa(Â, Â+)→ Spa(A,A+)

identifies the sets of rational open subsets.

Proof. This is [Hub93, Proposition 3.9] or [Mor19, Theorem III.3.1.]. The crucial

point is to approximate f1, . . . , fn, g ∈ Â such that (f1, . . . , fn)A by elements in A

without changing U( f1,...,fng ). �

In the complete case we get that Spa(A,A+) is “large enough”.

Lemma 4.44. Let (A,A+) be a complete Huber pair, i.e., A is complete. Then

(1) Spa(A,A+) = ∅ if and only A = 0,
(2) A+ = {f ∈ A | |f(x)| ≤ 1 for all x ∈ Spa(A,A+)},
(3) an element f ∈ A is invertible if and only if |f(x)| 6= 0 for all x ∈

Spa(A,A+).

Proof. This can be found in [Hub93, Proposition 3.6. ], [Mor19, Section III.4.4.] and
[SW20, Proposition 2.3.10.]. The last statement also follows from Lemma 4.45. �

Moreover, we note the following.

Lemma 4.45. Let (A,A+) be a complete Huber pair, and T = {t1, . . . , tn} ⊆ A a
finite subset. Then the following are equivalent:

(1) The ideal generated by T is A.
(2) For each x ∈ Spa(A,A+) there exists some t ∈ T with |t(x)| 6= 0.



LECTURE NOTES ON LUBIN-TATE SPACES 119

In this case, U( t1,...,tnti
) for i = 1, . . . , n form a covering of Spa(A,A+) by rational

open subsets.

Proof. This is [Mor19, Corollary III.4.4.3.]. �

4.5. The adic spectrum of a Huber pair. Let (A,A+) be a Huber pair. We
want to endow

X := Spa(A,A+)

with a structure presheaf X (of complete topological rings), and prove that it is a
sheaf if A admits a noetherian ring of definition. As rational open subsets U ⊆ X
form a basis of the topology on X by Lemma 4.36 it suffices to discuss them.

The crucial statement is then the following.

Proposition 4.46. Let (A,A+) be a Huber pair and U ⊆ X := Spa(A,A+) a
rational open subset. Then there exists a complete Huber pair (A,A+)→ (AU , A

+
U )

such that Spa(AU , A
+
U ) has image U and for every complete Huber pair (A,A+)→

(C,C+) such that Spa(C,C+)→ Spa(A,A+) has image in U there exists a unique
factorization

(A,A+) //

%%

(AU , A
+
U )

��
(C,C+).

Proof. Let f1, . . . , fn, g ∈ A such that (f1, . . . , fn)A ⊆ A is open and

U = U(
f1, . . . , fn

g
).

The crucial point is the following. If (C,C+) is complete such that Spa(C,C+)→
Spa(A,A+) has image in U , then by Lemma 4.44 g is invertible in C, and fi

g ∈ C
+

for all i = 1, . . . , n. This implies that there exists a unique morphism

(B,B+)→ (C,C+)

with (B = A[1/g], B+) the Huber ring constructed in Proposition 4.35. By Lemma 4.43
the completion (AU , A

+
U ) of (B,B+) satisfies the desired properties. �

If V ⊆ U is an inclusion of rational open subsets of X, then by the universal
property of (AU , A

+
U ) we get a natural morphism

rUV : (AU , A
+
U )→ (AV , A

+
V )

of Huber pairs over (A,A+).

Definition 4.47. The structure presheaf OX on X is the presheaf on the basis of
rational open subsets given by

U 7→ AU

and the restriction rUV . Similarly, the +-version of the structure presheaf O+
X on

X is

U 7→ A+
U .

A Huber pair (A,A+) is called sheafy if OX is a sheaf.
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For each x ∈ X the valuation

| − (x)| : A→ Γ ∪ {0}

extends naturally to a valuation | − (x)| on the stalk

OX,x := lim−→
U⊆X rational open,x∈U

OX(U)

of OX at x. By Lemma 4.44

O+
X(U) = {f ∈ OX(U) | |f(x)| ≤ 1}.

In particular, O+
X is a sheaf if OX is a sheaf.

We mention the following criterion for sheafiness.

Theorem 4.48. Let (A,A+) be a Huber pair. Then (A,A+) is sheafy if

(1) A is discrete, or
(2) A is finitely generated over a noetherian ring of definition.

There do exist more (important) cases when (A,A+) is sheafy, for example when
A is a strongly noetherian Tate ring, i.e., A is Tate and A〈T1, . . . , Xn〉 is noetherian
for each n ≥ 0, cf. [Mor19, Theorem IV.1.1.5.].

Sending a complete Huber pair (R,R+) to the adic space Spa(R,R+) is fully
faithful, cf. [Mor19, Proposition III.6.4.4].

Our case of interest are adic spaces associated to locally noetherian schemes,
i.e., adic spaces which are locally of the form Spa(A0, A0) for an adic noetherian
ring, or rigid-analytic varieties over some discretely valued non-archimedean field
K, i.e., adic spaces which are locally of the form Spa(A,A◦) with A a quotient of
some Tate algebra K〈X1, . . . , Xn〉 over K.

Given the category of adic spaces, we can now achieve our aim to pass to “generic
fibers” of formal schemes. Fix a discretely valued non-archimedean field K with ring
of integers OK . In the affine case, the passage to the generic fiber is the following.
Let A0 be a noetherian adic ring. Instead of Spf(A0) we consider the adic space
X := Spa(A0, A0). The “generic fiber of Spf(A0)” is then the fiber product

Xη := X ×Spa(OK ,OK) Spa(K,OK)

in the category of adic spaces. Alternatively, the generic fiber is the open sublocus

{x ∈ X | |π(x)| 6= 0} ⊆ X

for π ∈ OK a uniformizer. As a concrete example, the generic fiber of the for-
mal scheme Spf(OK〈T 〉) is the closed unit ball Spa(K〈T 〉,OK〈T 〉). In general the
generic fibers of affine formal schemes need not be affinoid, e.g., the generic fiber
of Spf(OK [[T ]]) (with OK [[T ]] given the (π, T )-adic topology) is the non-quasi-
compact open unit disc

DK ,

which is the interior of the closed (!) locus

{x ∈ BK | |x| < 1}.
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If (R,R+) is a complete Huber pair over (K,OK) we can describe the (R,R+)-
valued points of Spa(A)η for A a noetherian adic OK-algebra. Namely,

Spf(A)η(R,R+)
= Hom(OK ,OK)((A,A), (R,R+))
= lim−→

R0⊆R+ ring of definition

HomOK ,cts(A,R0)

= lim−→
R0⊆R+ ring of definition

Spf(A)(R0),

cf. [SW13, Proposition 2.2.2]. Note that the topological ring R+ need not be
admissible, and thus evaluating Spf(A) on R+ does not in general make sense.
However, each ring of definition R0 ⊆ R+ is π-adic, and hence

Spf(A)(R0) ∼= lim←−
n

Spf(A)(R0/π
n).
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5. The Gross-Hopkins period morphism

Let A be a complete discrete valuation ring with finite resiude field k of char-
acteristic p and cardinality q. Let K := Frac(A) be the fraction field of A. Fix
a uniformizer π ∈ A and a π-divisible formal A-module Gh over Spec(k) of height
h ∈ Z≥1. Let

M :=MRZ,G ∼=
∐
n∈Z
MRZ,G,n

be the associated Rapoport-Zink/Lubin-Tate space. In this section we want to
present the construction of the Gross-Hopkins period morphism

πGH : Mad
η → Ph−1,ad

K ,

which is an étale surjective covering of the adic h− 1-dimensional projective space
by the adic generic fiberMad

η ofM, and which is equivariant for some to be defined
action of the quasi-isogenies of Gh.

5.1. Outline of the construction. Let (B,B+) be a complete sheafy Huber pair
over (K,A). By construction,

Mad
η (B,B+) = lim−→

B0⊆B+

M(B0) = lim−→
B0⊆B+

lim←−
n

M(B0/π
n),

where B0 runs through the rings of definition contained in B+. On the other hand

Ph−1,ad
K (B,B+)

parametrizes the set of isomorphism classes of invertible B-modules L together with
a surjection

Bh → L.
In other words, we have to associate with any π-complete π-torsion free A-algebra
R (like B0) and any pair

(G, α) ∈M(R)

of a formal A-module G over R with a quasi-isogeny

α : G⊗̂RR/π 99K Gh⊗̂kR/π,
a natural invertible R[1/π]-module L together with generating (over R[1/π]) ele-
ments

c0, . . . , ch−1 ∈ L.
The line bundle L is easy to construct: As G is one-dimensional its Lie algebra
Lie(G) is an invertible R-module, and we can set

L := Lie(G)[1/π].

We saw in Proposition 3.18 that necessarily Lie(G) ∼= R is free. In particular, there
exists a lot of possible choices for the c0, . . . , ch−1 and our task is to find some
particularly interesting ones. This will be done as follows. For any π-complete
π-torsion free A-algebra R we construct a functor (for A = Zp this is an instance
of the covariant crystalline Dieudonné functor for p-divisible groups)

M(−) : FGA,π−div(R/π)→ {finite, locally free R−modules}
from the category of π-divisible formal A-modules to finite locally free R-modules
such that

M(G)
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has (constant) rank h if G has (constant) height h, and M(−) is compatible with
base change in R. Moreover, given a π-divisible formal A-module G over R we
construct a natural surjection

M(G⊗̂RR/π)� Lie(G).

Given this data the construction of the Gross-Hopkins period morphism can be
finished as follows. Let R be a π-complete, π-torsion free A-algebra and (G, α) ∈
M(R). Then the quasi-isogeny

α : G⊗̂RR/π 99K Gh⊗̂kR/π

defines an isomorphism

M(Gh)⊗A R[1/π] ∼= M(Gh⊗̂kR/π)[1/π]
M(α)∼= M(G⊗̂RR/π)[1/π],

and the surjection

M(Gh)⊗A R[1/π] ∼= M(G⊗̂RR/π)[1/π]� L = Lie(G)[1/π]

defines the desired point in

Ph−1,ad
K

∼= P(M(Gh)[1/π])ad

Using the Lubin-Tate formal Ah-module for the ring of integers in the unramified
degree h extension of K, we can then find explicit generators of

M(Gh)[1/π],

which yield the desired sections c0, . . . , ch−1 of L.

5.2. Quasi-logarithms. Let R be a π-complete π-torsion free A-algebra and G a
formal A-module over R. We assume that

G = GF
for some formal A-module law F ∈ R[[X,Y ]], [a]F ∈ R[[X]], a ∈ A, and later explain
how the following constructions can be made to depend only on G.

We set

RK := R⊗A K.

Definition 5.1. We call a series g(X) ∈ RK [[X]] with g(0) = 0 a quasi-logarithm
for F if its derivative g′(X),

∆g(X,Y ) := g(X) + g(Y )− g(F (X,Y ))

and

δag(X) := a · g(X)− g([a]F (X)), a ∈ A,
have coefficients in R[[X]]. We call a quasi-logarithm integral if g(X) has coeffi-
cients in R.

Clearly, the quasi-logarithms form an R-submodule of RK [[X]]. For example,
each R-multiple of logF (X) ∈ RK [[X]] is a quasi-logarithm. In fact, the R-multiples
of the logarithm are precisely those quasi-logarithms g(X) such that

∆g(X,Y ) = 0, δag(X) = 0, a ∈ A

as we require that g′(0) lies in R.
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Definition 5.2. We set

M(G)∨ := {quasi-logarithms for F}/{integral quasi-logarithms},
and call it the contravariant Dieudonné module of G.

The searched for functor M(−) will map a π-divisible formal A-module G0 over
R/π to

HomR(M(G)∨, R),

where G is any lift of G0 to R. Using abuse of notation this means that

M(G) := HomR(M(G)∨, R) = M(G⊗̂RR/π)

for a π-divisible formal A-module G over R. For this construction to make sense and
satisfy our desiderata from Section 5.1 we have to prove the following statements
for π-divisible formal A-modules:

(1) M(G)∨ is a finite, locally free R-module of rank h if the π-divisible formal
A-module G over R is of constant height h,

(2) M(G)∨ depends, up to canonical isomorphism, only on the reduction G/π
of G,

(3) M(−)∨ is functorial in morphisms of π-divisible formal A-modules over
R/π,

(4) there exists a natural surjection

M(G)→ Lie(G).

It is clear that there is a natural exact sequence

0→ HomR(G, Ĝa)→ R · logF →M(G)∨.

If G is π-divisible then
HomR(G, Ĝa) = 0,

and thus we get an injection

R · logF →M(G)∨

is injective. Note that canonically

ω(G) ∼= R logF

by “integrating” invariant differential forms, cf. Section 3.3. We want to describe
the cokernel of

ω(G)→M(G)∨

concretely via deformations of G. Recall that

R[ε] = R⊕ εR
with ε2 = 0.

Lemma 5.3. Let g(X) ∈ R[[X]] with g(0) = g′(0) = 0, and let f(X) = logF (X) ∈
RK [[X]] be the logarithm of F . Then g(X) is a quasi-logarithm for F if and only
if the series

fg(X) := f(X) + εg(X)

is the logarithm of formal A-module law Fg(X,Y ) ∈ R[ε][[X,Y ]].

Necessarily,

Fg(X,Y ) = f−1
g (fg(X) + fg(Y )), [a]Fg (X) = f−1

g (a · fg(X))

for a ∈ A.
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Proof. Write

f−1
g (X) = f−1(X) + ε · g1(X)

with g1(X) ∈ RK [[X]]. Then

g1(X) = −f ′(f−1(X))−1 · g(f−1(X)).

We get (using ε2 = 0)

Fg(X,Y )

=f−1
g (fg(X) + fg(Y ))

=f−1(fg(X) + fg(Y ))− ε 1

f ′(F (X,Y ))
g(F (X,Y ))

=F (X,Y ) + ε(
1

f ′(F (X,Y ))
(g(X) + g(Y )− g(F (X,Y )))).

We know that

f ′(Y ) = (
∂F

∂X
(0, Y ))−1 ∈ R[[X]]

by Section 3.3. In particular, f ′(F (X,Y )) is unit in the ring R[[X,Y ]]. We can
deduce that Fg(X,Y ) has coefficients in R if and only if

g(X) + g(Y )− g(F (X,Y )) ∈ R[[X]].

Let a ∈ A. Then we similarly see that

[a]Fg (X) = f−1
g (afg(X))

has coefficients in R if and only if ag(X) − g([a]F (X) has coefficients in R. If fg
is the logarithm of a formal A-module over R[ε], then its derivative has coefficients
in R[ε] by Section 3.3. This finishes the proof. �

From the proof we see that in Definition 5.1 we could equivalently demand that
g′(0) ∈ R instead of g′(X) ∈ R[[X]].

From the proof of Lemma 5.3 we can record:

(13)
Fg(X,Y ) = F (X,Y ) + ε∆g(X,Y )h(F (X,Y ))

[a]Fg (X) = [a]F (X) + δag(X)h([a]F (X))

for a ∈ A, where

h(Y ) =
∂F

∂X
(0, Y ) ∈ R[[Y ]].

Note that the formal A-module Fg, [a]Fg , a ∈ A can be defined for any quasi-
logarithm g for F , i.e., not just for those with g′(0) = 0.

Definition 5.4. We let

DefF (R[ε])

be the set of equivalence classes of formal A-module laws F ′ ∈ R[ε][[X,Y ]] reducing
to F modulo ε, with equivalence given by isomorphisms inducing the identity modulo
ε.

As a finite projective R[ε]-module M is finite free if and only its base change
M ⊗R[ε] R is finite free, DefF (R[ε]) could equivalently be defined via deformations
DefG(R[ε]) of the formal A-module G.

As in the proof of Theorem 2.34 we see thatDefF (R[ε]) is naturally anR-module.
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Lemma 5.5. If G is π-divisble of constant height h, then the R-module DefF (R[ε])
is finite free of rank h − 1, and for a morphism R → R′ of π-complete, π-torsion
free A-algebras the natural map

DefF (R[ε])⊗R R′ → DefF ⊗̂RR′(R
′[ε])

is an isomorphism.

Proof. Passing to the limit of R/πn we may prove the with R replaced by some
R/πn, n ≥ 1. If F is a ?-deformation of a normalized formal A-module of height h,
we may argue as in the proof of Lemma 2.39. The general case follows from this
by faithfully flat descent, Lemma 2.28 and the fact that ind-finite étale algebras lift
uniquely along nilpotents, cf. [Sta17, Tag 09ZL]. �

We set

h(X) :=
∂F

∂X
(0, X) ∈ R[[X]].

From Lemma 5.3 we can deduce the following statement.

Lemma 5.6. The map g 7→ Fg(X,Y )⊗ 1
h(X)dX with Fg as in (Equation (13)) fits

into an exact sequence

0→ HomR(G, Ĝa)→ ω(G)→M(G)∨ → DefG(R[ε])⊗R ω(G)→ 0.

In particular, if G is π-divisible of height h, then

(1) M(G)∨ is a finite free R-module of rank h depending only on G (and not
F ),

(2) for a morphism R→ R′ of π-complete π-torsion free R-modules the natural
map

M(G)∨ ⊗R R′ →M(G⊗̂RR′)∨

is an isomorphism.

Proof. We already discussed exactness at HomR(F, Ĝa), ω(G). Surjectivity on the
right follows from Lemma 5.3 and the fact that R[ε] is π-torsion free (which implies
that each formal A-module law over it is associated to some logarithm). It is clear
that

g 7→ Fg(X,Y )

is R-linear for the R-linear structure on DefF (R[ε]). Let us prove that the kernel
of g 7→ Fg is generated by the integral quasi-logarithms and the multiples of the
logarithm. Thus, assume that Fg for a quasi-logarithm g is equivalent to F0 = F .
Then there exists some α(X) = X + εβ(X) ∈ R[ε][[X]], β(X) ∈ R[[X]], such that

α(Fg(X,Y )) = F (α(X), α(Y )), α([a]Fg (X)) = [a]F (α(X)).

A short calculation shows that

∆g(X,Y )h(F (X,Y )) + β(F (X,Y )) =
∂F

∂X
(X,Y )β(X) +

∂F

∂Y
(X,Y )β(Y )

and

δag(X) · h([a]F (X)) + β([a]F (X)) =
∂[a]F
∂X

(X) · β(X).

Rewrite now both equations in terms of β(X) = h(X)γ(X) with γ(X) ∈ R[[X]]
(this is possible as h(X) ∈ R[[X]]×). By (Equation (11))

h(F (X,Y )) =
∂F

∂X
(X,Y )h(X), h(F (X,Y )) =

∂F

∂Y
(X,Y )h(Y )
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and similarly11

a · h([a]F (X)) =
∂[a]F
∂X

(X) · h(X)

which yields that

∆g(X,Y )h(F (X,Y ))+h(F (X,Y ))γ(F (X,Y )) = h(F (X,Y ))γ(X)+h(F (X,Y ))γ(Y )

and
δag(X)h([a]F (X)) + h([a]F (X))γ([a]F (X)) = ah([a]F (X))γ(X)

Thus,
∆g(X,Y ) = ∆γ(X,Y ), δag(X) = δaγ(X), a ∈ A,

as h(X) ∈ R[[X]]×. We can conclude that

g(X) = γ(X) + r logF (X)

for some r ∈ R (as g′(0) ∈ R). Similarly, the final assertions follow from Lemma 5.5
and the 5-lemma. �

In order to analyze M(−)∨ further we develop a suitable normal form for formal
A-module laws over π-torsion free A-algebras.

11This follows by taking the derivative of f([a]F (X)) = af(X) using f ′(X) = 1
h(X)

.
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5.3. A-typical formal A-modules. Let A be as before a complete discrete valu-
ation ring with finite residue field k of characteristic p and cardinality q. We fix a
uniformizer π ∈ A. Let K be the fraction field of A. Let R be an A-algebra and let
F ∈ R[[X,Y ]] be a formal A-module law. If R is π-torsion free we need a suitable
normal form for F in the following.

Definition 5.7. Assume that R is π-torsion free. We call F an A-typical formal
A-module if

logF (X) =

∞∑
i=0

biX
qi .

for some b0, b1, . . . ∈ RK := R⊗A K.

In particular, we can deduce that

[ζ]F (X) = ζ ·X
for each q − 1-th root of unity in A, and that

[π]F (X) =

∞∑
i=0

riX
qi

for some r0, r1, . . . ∈ R.

Lemma 5.8. Assume that R is π-torsion free, and that F ∈ R[[X,Y ]] is an A-
typical formal A-module law. Then there exist b0 = 1, b1, . . . R, v0 = π, v1, . . . ∈ R
such that

logF (X) =

∞∑
i=0

biX
qi ,

[π]F (X) ≡ viXqimod(v0, . . . , vi−1) + (X,Y )q
i+1, i ≥ 0,

and

πbk = b0vk + b1v
q
k−1 + b2v

q2

k−2 . . .+ bk−1v
qk−1

1

for k ≥ 1. In particular, πi · bi ∈ R for i ≥ 1.

This proves that our definition of being A-typical agrees with the one used in
[HG94].

Proof. We already know that

logF (X) = b0X + b1X
q + b2X

q2 + . . .

for some b0 = 1, b1, b2, . . . ∈ R. Writing F as the image of the universal formal
A-module we find v0 = π, v1, . . . ∈ R such that

[π]F (X) ≡ viXqi mod (v0, v1, . . . , vi−1) + (X,Y )q
i+1.

Assume that

π · bk = b0vk + b1v
q
k−1 + b2v

q2

k−2 . . .+ bk−1v
qk−1

1

for some k ≥ 0. We know that

π logF (X) = logF ([π]F (X)).

Write

[π]F (X) =

∞∑
i=0

wiX
qi .
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Then we can conclude

π · bk+1 ≡ b0wk+1 + b1w
q
k + . . .+ bkw

qk−1

1 mod (π).

Using that wi lies in the ideal (v0, v1, . . . , vk) of R it is clear that we can redefine
vk+1, such that

π · bk+1 ≡ b0vk+1 + b1v
q
k + . . .+ bkv

qk

1

and

[π]F (X) ≡ vk+1X
qk+1

≡ wk+1X
qk+1

mod (v0, v1, . . . , vk) + (X,Y )q
k+1+1.

By induction we can prove the final statement that πibi ∈ R. This finishes the
proof. �

We will use the following fact.

Lemma 5.9. Each formal A-module over R is isomorphic to an A-typical one.
Moreover, we may assume that the isomorphism reduces to the identity on some
quotient R/I of R, if the base change to R/I is already A-typical for some ideal
I ⊆ R.

Proof. Cf. [HG94, Section 5] resp. [Haz78, 21.5.6]. �

Remark 5.10. Set R = A[v1, v2, . . .] and define f(X) ∈ RK [[X]] as the unique
power series satisfying

f(X) = X +

∞∑
i=1

vi
π
fq

i

(Xqi),

where fq
i

denotes the power series with vj replaced by vq
i

j for j ≥ 1. Equivalently,

f(X) =

∞∑
i=0

biX
qi

with b0 = 1, b1, . . . ∈ R, and

πbk = b0vk + b1v
q
k−1 + b2v

q2

k−2 . . .+ bk−1v
qk−1

1

for k ≥ 1. Then f is the logarithm of a formal A-module F over A[v1, v2, . . .], called
the universal formal A-module (law). This is a particular case of Hazewinkel’s
integrality lemma in this case, cf. [Haz78, Section 2], [HG94, Proposition 5.7.].

Remark 5.11. Let h ≥ 1 and with the notation from Remark 5.10 consider the
A-algebra homomorphism

R→ A

sending vj to 0 if j 6= h and vh to 1. The image g(X) ∈ A[[X]] of f(X) ∈ R[[X]]
under this homomorphism satisfies

g(X) = X +
1

π
g(Xqh),

i.e.,

g(X) = X +
Xqh

π
+
Xq2h

π2
+ . . . .
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We claim that12

g−1(πg(X)) ≡ Xqh mod π,

or equivalently

πg(X) = g(Xqh + πγ(X))

for some γ(X) ∈ A[[X]]. We prove the last statement via approximation modulo
powers of X. Thus assume that γn(X) ∈ A[[X]] is found such that

πg(X) ≡ g(Xqh + πγn(X)) mod (X)n

(clearly this can be done for n = 1). Set

γn+1(X) = γn(X) + anX
n.

Then

g(Xqh + πγn+1(X)) ≡ g(Xqh + πγn(X)) + πanX
n mod (X)n+1

as g′(0) = 1, and we want that this agrees with

πg(X) = πX + g(Xqh)

modulo (X)n+1. Hence it suffices to see that g(Xqh + πγn(X))− g(Xqh) has coef-
ficients in πA. Let i ≥ 0. Then

(Xqh + πγn(X))q
i

= Xqh+i + πi+1δn(X)

for some δ(X) ∈ A[[X]] by the binomial formula. This implies that

1

πi
(Xqh + πγn(X))q

i

− 1

πi
Xqh

i
= π · δn(X)

as desired.
We can conclude that one of the formal A-modules Fh of height h, whose ex-

istence we proved in Lemma 2.4 via the Lubin-Tate lemma Lemma 1.14, can be
chosen to have logarithm g(X), i.e.,

Fh(X,Y ) := g−1(g(X) + g(Y )), [a]Fh(X) = g−1(ag(X)), a ∈ A,
because we proved that with this definition Fh, [a]Fh , a ∈ A, have coefficients in A
and

g−1(πg(X)) ≡ Xqh mod π.

In [HG94, Section 13] this formal A-module is also called the canonical lifting.

In the A-typical case we can derive an easier description of the module of quasi-
logarithms M(G)∨.

Lemma 5.12 ([HG94, Proposition 8.12]). Let R be π-torsion free, and F ∈ R[[X,Y ]]
an A-typical π-divisible formal A-module law. Then each class in

M(GF )∨

can be represented by a quasi-logarithm which has the form g(X) =
∞∑
i=0

miX
qi with

πi ·mi ∈ R for each i ≥ 0.

Proof. This follows from Lemma 5.9 and Lemma 5.3 by Lemma 5.8. �

12We think that the argument for this in [Haz78, (8.3.4.)] is wrong as the calculation is made
mod π, but the f(X) in loc. cit. has coefficients in K.
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We now explain why M(G)∨ only depends on the reduction of G resp. F to R/π.
The following lemma is crucial for everything that follows.

Lemma 5.13. Let g(X) ∈ RK [[X]] be a quasi-logarithm for F , f1, f2 ∈ R[[X,Y ]]
power series with no constant term with f1 ≡ f2 mod π. Then

g(f2(X,Y ))− g(f1(X,Y ))

has coefficients in R.

Proof. By Lemma 5.9 we may assume that F is A-typical. Write

f2(X,Y ) = f1(X,Y ) + h(X,Y )

with h ∈ R[[X,Y ]] having coefficients in π ·R, and

g(X) =

∞∑
i=0

miX
qi ,

cf. Lemma 5.12. Then (supressing the variables X,Y )

g(f2)− g(f1)

=g(f1 + h)− g(f1)

=

∞∑
i=0

mi((f1 + h)q
i

− fq
i

1 )

=

∞∑
i=0

mi

qi−1∑
j=1

(
qi

j

)
hjfq

i−j
1 .

Now the claim follows from the fact that πimi ∈ R and(
qi

j

)
πj ∈ πi+1R

for all 1 ≤ j ≤ qi − 1, cf. Lemma 5.8.13 �

Proposition 5.14. Let F1, F2 ∈ R[[X,Y ]] two formal A-modules laws with Gi :=
GFi , i = 1, 2. Let f1, f2 ∈ R[[X]] such that

fj(F1(X,Y )) ≡ F2(fj(X), fj(Y )) mod π,

fj([a]F1
(X)) ≡ [a]F2

(fj(X)) mod π,

and

f1 ≡ f2 mod π.

Then g(X) 7→ (g(fj(X)), j = 1, 2, induce the same, well-defined R-linear map

M(G2)∨ →M(G1)∨

This proposition can interpreted as the statement that the functor M(−)∨ is
“crystalline”.

13To see this last statement apply the following observation to R = A[X], a = 1 + π ·X, b = 1:

Let R be some A-algebra and a, b ∈ R such that a ≡ b mod π. Then aq
i ≡ bqi mod πi+1.
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Proof. Let g(X) ∈ RK [[X]] be a quasi-logarithm for F2. We first show that

g(f1(X))

is a quasi-logarithm for F1. Lemma 5.13 applied to f1(F1(X,Y )), F2(f1(X), f1(Y ))
shows that

g(f1(F1(X,Y ))− g(F2(f1(X), f1(Y ))

has coefficients in R, and similarly for the formal multiplication. This implies that
g 7→ g(f1(X)) defines a well-defined map

f∗1 : M(G2)∨ →M(G1)∨.

Lemma 5.13 applied to f1, f2 shows then that f∗1 = f∗2 on M(G2)∨. �

Let G0 be a π-divisible formal A-module over R/π. In particular, we can deduce
that

G0 →M(G)∨

is functorial for morphisms between formal A-modules over R/π, and that

G0 7→M(G0)∨ := M(G)∨

with G any lift of G0 to R, defines a well-defined functor. We set

M(G0) := HomR(M(G0)∨, R).

If G is any lift of G0, then by Lemma 5.6 we have a natural surjection

M(G0)→ Lie(G).

Morever, M(G0) is of rank equal to the height of the π-divisible formal A-module
G0.

In particular, the construction of the Gross-Hopkins period morphism

πGH : Mad
η → P(M(Gh)⊗A K)ad

is finished, cf. Section 5.1.
Let us note that there a priori exist two A-module structures on M(G0): one

via the A-action on G0 and the other via the natural R-module structure on quasi-
isomorphisms and the homomorphism A → R. As ag(X) − g([a]F (X)) has coeffi-
cients in R for any quasi-logarithm g, we see that both A-actions coincide.

5.4. πGH is étale and surjective. Fix A,Fh, π,K,M etc. as in Section 5.1. We
want to show that the Gross-Hopkins period morphism

πGH : Mad
η → P(M(Gh)⊗A K)ad

is étale and surjective.
We first prove that it is étale in the sense that πGH induces an isomorphism on

tangent spaces. Let us recall how to describe the tangent space of projective space.
Let S be any ring and let M be a finite, projective S-module. The projective space
P(M) associated with M represents the functor

AlgS → (Sets)

sending an S-algebra T to the isomorphism class of pairs (L, γ) with L an invertible
T -module and γ : M ⊗S T � L a surjection. Given any section z ∈ P(M)(T )
represented by the surjection ϕ : M � L the tangent space at z

Tz(P(M)) := P(M)(T [ε])×P(M)(T ) {z}
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identifies canonically with
HomR(M,L)/(T · ϕ)

by sending ψ : M→ L to the surjection

ϕ+ ε · ψ : M [ε]→ L[ε].

We can similarly describe the tangent space of a section of an adic projective
space. Given a complete sheafy Huber pair (B,B+) over (K,A), and a section
x ∈Mad

η (B,B+) represented by a pair

(G, α) ∈M(B0)

for some ring of definition B0 ⊆ B+ ⊆ B, then the tangent space

TxMad
η

identifies with
DefG(B0[ε])⊗B0

B.

The étaleness of πGH is then implied by the following statement.

Lemma 5.15. For any x,B0,G, . . . as above the map B-linear map

TxMad
η → TπGH

P(M(Gh)⊗A K)ad

is an isomorphism.

Proof. The Gross-Hopkins period morphims is induced by the natural surjection

ϕ : M := M(Gh)⊗A B ∼= M(G)⊗B0
B → L := Lie(G)⊗B0

B

dual to the inclusion ω(G)→M(G)∨ By Lemma 5.6 we get

Hom(M,L)/Bϕ ∼= M∨ ⊗B L/Bϕ ∼= DefG(B0[ε])⊗B0 B,

which is TxMad
η . Unravelling the definitions of these identifications shows that πGH

induces the identity on tangent spaces. �

To show surjectivity of πGH we will make πGH more explicit. Recall that

M =
∐
n∈Z
MRZ,n

is a disjoint union and that

M0 :=MRZ,0
∼=MFh

∼= Spf(A[[X1, . . . , Xh−1]]),

where MFh is the Lubin-Tate space defined in Section 2.2.
Let R be a π-complete, π-torsion free A-algebra and set RK := R⊗AK. Assume

that (G, α) ∈M(R), i.e., G is a formal A-module over R and

α : G⊗̂RR/π 99K Gh⊗̂kR/π
is a quasi-isogeny. Fix some n� 0 such that [π]nG ◦α−1 = α−1 ◦ [π]nGh is an isogeny

[π]nG ◦ α−1 : Gh⊗̂kR/π → G⊗̂RR/π.
We may write G = GF associated to some formal A-module law F ∈ R[[X,Y ]], and
then lift [π]nG ◦ α−1 to some power series

f[pi]nG◦α−1(X) ∈ R[[X]].

The pullback g(X) 7→ g(f[π]nG◦α−1(X)) defines the morphism

M([π]nG ◦ α−1)∨ : M(G)∨ = M(G⊗̂RR/π)∨ →M(Gh)∨ ⊗A R
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and then M(α−1)∨ = 1
πnM([π]nG ◦ α−1)∨. Assume now that

c0, c1, . . . , ch−1 : M(Gh)∨ → A

form a basis of M(Gh) = HomA(M(Gh)∨, A). Let R+
K be the integral closure of R

in RK , and assume that RK is sheafy. Then

M(R) ⊆Mad
η (RK , R

+
K)

and

πGH(G, α) ∈ P(M(Gh)⊗A K)ad(RK , R
+)

(c0,...,ch−1)∼= Ph−1,ad
K (RK , R

+)

is given by the point

[c0(M(α)−1(logF )) : c1(M(α)−1 logF ) : . . . : ch−1(M(α)−1(logF )]

because R · logF (X) ⊆ M(G)∨ is the image of the canonical morphism ω(G) ⊆
M(G)∨. As a side remark we can see here very concretely that the image of (G, α)
does not depend on the formal A-module law F because for different choices of F
the logarithm logF (X) changes by a multiple.

Assume now that (G, α) ∈ M0(R) ⊆ M(R). By Proposition 3.18 we may then
find a ?-deformation F ∈ R[[X,Y ]] of Fh such that G = GF and α corresponds to
identity modulo some ideal I ⊆ R with π ∈ I and I/(π) ⊆ R/π nilpotent. The

same holds then for α−1 and because [π]Gh(X) = Xqh we may take

f[π]nG◦α−1(X) = Xqnh

for some n � 0 (the power series Xqnh is the n-fold composition of Xqh). Con-

cretely, if Iq
mh ⊆ (π), then Xqmh defines a morphism F → Fh over R/(π). By

arguments as in Lemma 3.16 we may then find n. The map

M(α−1)∨ : M(G)∨ ⊗R RK ∼= M(Gh)∨ ⊗A RK
sends a quasi-logarithm g(X) for F to

1

πn
g(Xqnh).

More canonically, we can write this as

g(X) 7→ lim
n→∞

1

πn
g(Xqnh) ∈M(Gh)∨ ⊗A RK

and the limit is eventually constant.
Now we have to calculate M(Gh)∨ and construct a suitable basis

c0, c1, . . . , ch−1 ∈M(Gh).

For this we calculate the quasi-logarithms in the universal A-typical case. Let

FA−typ ∈ A[v1, v2, . . .]

be the universal A-typical formal A-module constructed in Remark 5.10, i.e., the
logarithm fA−typ ∈ X ·K[v1, v2, . . .][[X]] of FA−typ satisfies the functional equation

fA−typ(X) = X +

∞∑
i=1

vi
π
fq

i

A−typ(Xqi).

For each i ≥ 1 consider the base change Fi of FA−typ along the map

A[v1, v2, . . .]→ A[v1, v2, . . .][ε],
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which maps vj to vj if i 6= j and vi to vi + ε. We can write the logarithm of Fi in
the form

fA−typ(X) + εgi(X)

with gi(X) a quasi-logarithm for FA−typ by Lemma 5.3. Concretely,

gi(X) =
∂f

∂vi
(X) ∈ K[v1, v2, . . .][[X]].

Let FLT,h ∈ A[[X,Y ]] be the Lubin-Tate formal A-module whose logarithm is

f0(X) := X +
Xqh

π
+
Xq2h

π2
+ . . . ,

cf. Remark 5.11. This is the specialization of the universal A-typical formal A-
module along the map

A[v1, . . .]→ A

sending vj to 0 if j 6= h and vh to 1 because f0(X) is the unique solution of the
functional equation

f0(X) = X +
1

π
f0(Xqh)

with vanishing constant term. For i ≥ 1 the above quasi-logarithm gi(X) specializes
and yields the quasi-logarithm

fi(X) :=
1

π
f0(Xqi), i = 1, . . . , h− 1.

for FLT,h. Indeed, this follows easily from the functional equation for fA−typ and the
fact that gi(X) is the vi-derivative of fA−typ. By Lemma 5.6 and the construction
of the gi we can deduce that

M(Gh)∨ = 〈f0, f1, . . . , fh−1〉A,

or more precisely that the classes of f0, f1, . . . , fh−1 form a basis of M(Gh)∨. Note
that the map g(X) 7→ g(Xq) defines an endomorphism ϕM(Gh)∨ of M(Gh)∨ by
Proposition 5.14 (as Xq lifts the Frobenius on Gh). Let Ah be the ring of integers
in the unramified extension Kh of K of degree h and let kh be the residue field of
A. Then Ah acts on FLT,h⊗̂kkh. Concretely, if ζ ∈ An is a qh − 1-th root of unity,
then ζ acts via the power series ζX. Namely, it follows directly from the functional
equation

f0(X) = X +
1

π
f0(Xqh)

for the logarithm f0(X) of FLT,h that f0(ζX) = ζf0(X). Let σ : Ah → Ah the
lift of the q-Frobenius. Then Ah acts on fi ∈ M(Gh) ⊗A Ah via the morphism σi.
Indeed, it suffices to check this for a qh−1-th root of unity ζ ∈ Ah, where it follows
from the fact that σ(ζ) = ζq and the definition of fi.

Let c0, . . . , ch−1 ∈ M(Gh) ⊗A K be the dual basis of f0, . . . , fh−1 ∈ M(Gh)∨.
From the definition of the fi we see that

c0(g(X)) = lim
n→∞

πnmhn ∈ K

and

ci(g(X)) = lim
n→∞

πn+1mhn+1 ∈ K
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for i = 1,≤, h−1, if g(X) =
∞∑
i=0

miX
qi is a quasi-logarithm for FLT,h, cf. Lemma 5.12.

In particular, the limit above exists for i = 0, . . . , h − 1 and only depends on the
class of g(X) in M(Gh)∨.

Let us come back to the pair (G, α) ∈ M0(R) represented by the ?-deformation
F of Fh. We may assume that F is A-typical by Lemma 5.9. Let

g(X) =
∑
i=0

miX
qi

be a quasi-logarithm for F . We can conclude that

M(α−1)(g(X))

= lim
n→∞

1

πn
g(Xqhn)

=
1

πn

∞∑
i=0

miX
qhn+i

for n� 0 and thus
c0(M(α−1)(g(X)))

= lim
j→∞

1

πn
πjmh(j−n)

= lim
j→∞

πjmhj

and
ck(M(α−1)(g(X)))

= lim
j→∞

1

πn
πj+1mh(j−n)+k

= lim
j→∞

πj+1mhj+k

for k = 1, . . . , h − 1. Appyling this to g(X) = logF (X) yields the homogeneous
coordinates of πGH(G, α). For example, the canonical lifting GFLT,h

is sent to the
point [1 : 0 : . . . : 0]. In general, we can be more concrete. Namely, consider the
formal A-module

Fu ∈ A[[u1, . . . , uh−1]][[X,Y ]],

which is the specialization of FA−typ ∈ A[v1, v2, . . .][[X,Y ]] along the morphism

A[v1, v2, . . .]→ A[[u1, . . . , uh−1]]

sending vi 7→ ui for i = 1, . . . , h−1, vh 7→ 1, and vi 7→ 0 for i > h. By Theorem 2.34
the resulting morphism

Spf(A[[u1, . . . , uh−1]])→M0

is an isomorphism. The logarithm of FA−typ has the form

fA−typ(X) =

∞∑
i=0

biX
qi

with b0 = 1, and bk, k ≥ 1, defined via the recursive formula

πbk = b0vk + b1v
q
k−1 + . . .+ bk−1v

qk−1

1 .
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Let

D := Spa(K〈 u
h
1

πh−1
, . . . ,

uhh−1

πh−(h−1)
〉) ⊆ Spf(A[[u1, . . . , uh−1]])ad

η ,

i.e., D is the “polydisc” parametrizing (automatically topologically nilpotent) ele-
ments u1, . . . , uh−1 in a (complete, sheafy) Huber pair (B,B+) over (K,A) such
that |ui(x))|h ≤ |π(x)|h−i for all x ∈ Spa(B,B+) and i = 1, . . . , h− 1.

For Ph−1,ad
K we take the homogeneous coordinates c0, c1, . . . , ch−1, i.e., generating

sections of O(1). Let

wi :=
ci
c0
,

which are coordinates of Ah−1,ad
K ⊆ Ph−1,ad

K . Set

D′ := Spa(K〈 w
h
1

πh−1
, . . . ,

whh−1

πh−(h−1)
〉) ⊆ Ph−1,ad

K .

Proposition 5.16. The Gross-Hopkins period morphism restricts to an isomor-
phism

πGH : D→ D′.

Proof. Set

R := A〈 u
h
1

πh−1
, . . . ,

uhh−1

πh−(h−1)
〉 ∼= A〈T1, . . . , Tn−1〉

with Ti := uhi /π
h−i, i = 1, . . . , h − 1, and let F ∈ R[[X,Y ]] be the base change of

the A-typical formal A-module Fu over A[[u1, . . . , uh−1]] with its logarithm

logF (X) =

∞∑
i=0

biX
qi .

Set
c0 := lim

n→∞
πnbhn ∈ RK := R⊗A K

and
ci := lim

n→∞
πn+1bhn+i ∈ RK := R⊗A K

for i = 1, . . . , h − 1. Define uh := 1. We know by construction of the universal
A-typical formal A-module FA−typ that

(14) π · bn =
∑

0<j≤h

ujσ
j(b)n−j ,

with
σ : R→ R

the A-algebra homomorphism induced by σ(ui) = uqi for i = 1, . . . , h−1, and bn = 0
for n < 0. We let

| − | := | − |D
be the maximum norm on RK , cf. Lemma 4.26. In particular,

|ui|h = |π|h−i

for i = 1, . . . , h. Let
ν : RK → Q ∪ {∞}

be the associated additive valuation, which we assume to be normalized such that
ν(π) = 1. This implies

ν(ui) =
h− i
h
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for i = 1, . . . , h. We claim that

(15) ν(πn+1bhn+i) =
h− i
h

for i = 1, . . . , h, and n ≥ 0. In the case i = 1, n = 0 we have

ν(πb1) = ν(u1) =
h− 1

h

as b1 = u1

π by (Equation (14)). Thus assume that the statement is proven for every

number hm + j < hn + i with j = 1, . . . , h. Then we know that πm+1bhm+j ∈ R
and

σ(πm+1bhm+j) ≡ (πm+1bhm+j)
q mod πR.

From the strong triangle inequality we can deduce

ν(σ(πm+1bhm+j)) = qν(πm+1bhm+j)

From (Equation (14)) we get

πn+1bhn+i =
∑

0→j≤h

ujπ
nσj(bhn+i−j).

We claim that for i = 1, . . . , h

ν(πn+1bhn+i) = ν(uiπ
nσi(bhn)),

which using induction (or that b0 = 1 if n = 0) equals

h− i
h

+ qi
h

h
=
h− i
h

.

To prove this last claim it suffices to see that

ν(ujπ
nσj(bhn+i−j)−

h− i
h

> 0

If i < j, then

ν(ujπ
nσj(bhn+i−j))−

h− i
h

=
h− j
h

+ qj
h− (h− j + i)

h
=

(qj − 1)(j − 1)

h
> 0.

If i > j, then

ν(ujπ
nσj(bhn+i−j))−

h− i
h

=
h− j
h

+qj
h− i+ j

h
−1−h− i

h
=

(qj − 1)(h− (i− j))
h

> 0.

This finishes the proof that

ν(πn+1bhn+i) =
h− i
h

for i = 1, . . . , h. In particular, we can deduce that

ν(c0) = 0, ν(c1) =
h− 1

h
, . . . , ν(ch−1) =

1

h

by passing to the limit over n. In particular, πGH maps D to D′. If we write

D′ ∼= Spa(K〈w1, . . . , wh−1〉)

with indeterminants w1, . . . , wh−1, then πGH is induced by the morphism

α : A〈wh1/πh−1, . . . , whh−1/π〉 → R ∼= A〈T1, . . . , Th−1〉, wi 7→
ci
c0
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for i = 1, . . . , h− 1. We saw above that

ν(πn+1bhn+i − uiσj(bhn)) >
h− i
h

,

which together with ν(σj(bhn) − 1) > 0 (as was proven implicitly above) implies
that

ν(α(wi)− ui) >
h− i
h

.

This in turn proves that α is an isomorphism. Indeed, as

A〈wh1/πh−1, . . . , whh−1/π
1〉, R

are π-complete and π-torsion free it suffices to prove this modulo π, where it follows
from the fact that α(whi /π

h−i) ≡ uhi /π
h−i for i = 1, . . . , h − 1. This finishes the

proof. �

In [Far10, Corollaire 11] Fargues reinterprets the domain D as the locus in Mad
ét

parametrizing the locus where the π-torsion in G is semistable (in the sense de-
veloped in [Far10]). We can now finish the proof the the main theorem of this
course.

Theorem 5.17 ([HG94, Section 23]). The Gross-Hopkins period map

πGH : Mad
η → P(M(Gh)⊗A K)ad ∼= Ph−1,ad

K

is étale and surjective. The same holds for its restriction to Mad
η,0.

Proof. Étaleness was proven in Lemma 5.15. Let

Π: Gh → Gh
be the Frobenius isogeny. For surjectivity of πGH it suffices to show that

Ph−1,ad
K ⊆

⋃
n∈Z

Πn · D′

for D′ as in Proposition 5.16. Let C/K be any non-archimedean field extension and
let

ν : C → R ∪ {∞}
be its additive valuation, normalized such that ν(π) = 1. For

[c0 : c1 : . . . : ch−1] ∈ Ph−1,ad
K

any field valued point we have

Π · [c0 : c1 : . . . : ch−1] = [π−1c1 : c2 : . . . : ch−1 : c0] ∈ Ph−1,ad
K .

Choose i = 0, 1, . . . , h− 1 such that

ν(ci) +
i

h

is minimal. Then

Πi · [c0 : c1 : . . . : ch−1] = [π−1ci : ci+1 : . . . : ch−1 : c0 : π−1c1 : . . . : π−1ci−1]

lies in D′. Indeed, we know that

ν(cj) +
j

h
≥ ν(ci) +

i

h
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for j = 0, . . . , h− 1. If j > i, we can conclude

ν(cj)− ν(π−1ci) ≥ 1 +
i

h
− j

h
=
h− (j − i)

h
.

If i < j, we can conclude

ν(π−1cj)− ν(π−1ci) ≥
i

h
− j

h
=
i− j
h

as desired. We are left with the statement that the restriction

πGH : Mad
η,0 → Ph−1,ad

K

is surjective, too. For this it suffices by the above argument to show that if R is
the ring of integers in a sufficiently large finite extension of K and

(G, α) ∈M0(R),

then there exists a point (G′, α′) ∈M0(R) such that

πGH(G,Π−1 · α) = πGH(G′, α′).

By [HG94, (23.19)] resp. [Lub67] there exists (for R sufficiently large) an isogeny

f : G → G′

reducing to the Frobenius isogeny, with G′ = GF ′ a ?-deformation of Fh. Let α′ the
unique quasi-isogeny such that we arrive at the commutative diagram

M(Gh)K
M(α−1)//

M(Π)

��

M(G)K
ψG //

f

��

Lie(G)K

f

��
M(Gh)K

M((α′)−1)// M(G′)K
ψG′ // Lie(G)K ,

where the subscripts denote base extension, and all vertical morphisms are isomor-
phisms. The composition

ψG ◦M(α−1) ◦M(Π)

defines the point πGH(G,Π−1α) while the composition

ψG ◦M((α′)−1)

defines the point πGH(G′, α′). From the above commutative diagram we can con-
clude that both points define the same point in P(M(Gh)K)ad. �

Via further calculations Gross and Hopkins prove in [HG94, Section 23] further-
more that via the action of the quasi-isogenies of Gh each point onMad

η can be trans-
lated to lie in D, cf. [HG94, Corollary 23.26], and they describe the fibers of πGH, cf.
[HG94, Proposition 23.28]. Namely, given any algebraically closed non-archimedean

field extension C/K and a point z ∈ Ph−1,ad
K (C) there is a non-canonical isomor-

phism

π−1
GH(x) ∼= GLh(K)/GLh(A).

More precisely, by the argument in the end of Theorem 5.17 one can see that
quasi-isogenious formal A-modules over OC map to the same point under the Gross-
Hopkins period morphism. Given any formal A-module G over OC the isomorphism
classes of formal A-modules overOC , which are quasi-isogenious to G are in bijection
with GLh(K)/GLh(A), cf. [Lub67].
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