LECTURES ON THE FARGUES-FONTAINE CURVE

JOHANNES ANSCHUTZ

ABSTRACT. The topic of these lecture notes is the (schematic) Fargues-Fontaine
curve, following [9]. We aim to prove its basic properties (e.g. that it is a
Dedekind scheme), to sketch the classification of its vector bundles and finally
to deduce the theorem “weakly admissible implies admissible” of p-adic Hodge

theory.
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2 JOHANNES ANSCHUTZ

1. GENERAL NOTATIONS AND REMARKS

Nearly all proofs are taken from [9]. Of course, all errors or inaccuracies are on
my side. Any comments/corrections are welcomel!

The author wants to thank Ben Heuer for replacing him in two lectures and for
his detailed reading of the manuscript.

Some material has been revisited by the author and differs now from the original
lecture (e.g. Section 3] Section {4 Section . Moreover, the manuscript contains
some additional details which were not presented in the lectures.

The following notation will be used frequently.

p a fixed prime
E/Q, a finite extension
Op C E the ring of integers
7 € Of a uniformizer
F, = Og/(m) the residue field of O
F/F, a non-archimedearﬂ algebraically closed extension
Op :={z € F | |z] <1} C F the ring of integers of FE|
mp = {z € Op | |z| < 1} C OF the maximal ideal of Op
k:= Op/mp the residue field of Op
Aint = Ainrp,p = Wo, (OF) the ring of ramified Witt vectors of Op
The ring Op is a non-noetherian local integral domain with exactly two prime
ideals, {0} and mp, its ideals are linearly ordered and each finitely generated ideal
is principal.

2. LECTURE OF 16.10.2019: INTRODUCTION TO p-ADIC HODGE THEORY

This lecture is meant to give a short motivational overview of p-adic Hodge
theory and the theorem of Colmez/Fontaine ([7]) that “weakly admissible” implies
“admissible”, cf. Theorem Only in this lecture we will use more theory from
arithmetic geometry (such as étale cohomology theory, ...). For understanding the
construction of the Fargues-Fontaine curve, knowledge of valuation theory, local
fields and (basic) scheme theory is sufficient.

Fix a prime p, let Q, be field of p-adic numbers and let K be a finite extension
of Qpﬂ The usual p-adic norm

| = lp: @p = Rxo
on Q, extends uniquely to a norm

| — ‘ : F — RZO
on some fixed algebraic closure K of K. Let

C’::%

1By definition this means that F' is a complete topological field whose topology is induced by
a non-trivial non-archimedean norm | — [: F — Rx>.

2The subring O does not depend on the choice of a norm | — | on F as it consists precisely
of the subset of powerbounded elements, i.e., those elements z € F such that {z™ | n > 0} is
bounded, where a subset A C F' is bounded if for all open neighborhoods U of 0 there exists an
open neighborhood V of 0 such that A-V C U.

3Tt is sufficient to assume that K is a discretely valued extension of Qp with perfect residue
field in the following discussions.
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be the completion of K with respect to the norm |—|. Then C is again algebraically
closed E| and the action of the Galois group
Gk = Gal(K/K)

on K extends by continuity to an action of Gx on C.
Let X — Spec(K) be a proper, smooth morphism.
A basic theorem of p-adic Hodge theory is the “Hodge-Tate decomposition” E|

Theorem 2.1 (Faltings[8]). For n > 0 there exists a natural Gk -equivariant iso-
morphism

H (X7, Q) ®g, C = @ HI(X, Q%) @K C(—j),
i+j=n
where QJ);/K = AJ (Qﬁ(/K) is the sheaf of j-forms on X.

Remark 2.2. e Here H}:(X%,Qp) denotes the n-th p-adic étale cohomol-
ogy of X, which is a finite dimensional QQp-vector space equipped with a
continuous action of G.

o If M is a Z,-module with an action of G, then the j-th Tate twist of M
is defined by

M(j) :== M &z, Z,(1)¥, j € Z,
with the diagonal G i-action, where

Zp(l) = L%l Hepk (K)
is the Tate module of the p>-roots of unity in K (with its canonical Galois
action). As Z,-modules, Z,(1) = Z,,.
e In Theorem Gk acts diagonally on the LHS, and via C(—j) on the
RHS.
e The theorem has a precursor in complex Hodge theory: If Y is a compact
Kéahler manifold, then

Hn(Y7 Z) ®z C = @ H’(Y’ Q%/)7
i+j=n
where QJ, is the sheaf of holomorphic j-forms on Y and H*(Y,Z) the sin-
gular cohomology of Y.

e The Theorem holds by work of Scholze (cf. [20]) for proper, smooth
rigid-analytic varieties as well.

The Tate twists on the RHS in Theorem[2.1]are necessary to get G g-equivariance:
Set X = Pl and n = 2. Then the LHS of Theorem is G k-equivariantly iso-
morphic to

C(-1)
as
HéQt(X» Zp) = Hét(Gm,?7Zp) = Zp(_1)7
while the RHS is isomorphic to C(—1) as
Hl(X7 Qﬁ(/K) = Hl(X7O(—2)) =K.

4By Krasner’s lemma.
5We recommend [2] for an approach to the Hodge-Tate decomposition via perfectoid spaces.
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To see that C' and C'(—1) are not isomorphic as C-modules with a semilinear G-
action, we cite the following fundamental theorem of Tate.

Theorem 2.3. The continuous group cohomology of Gk with coefficients in C(j)
is given by
(2) K = Hoy(Gr,C) = H(Gk, C).

Here by definition, continuous group cohomology of Gk relates to the usual
Galois cohomology (with discrete coefficients) by the formula

H( (G, C(4)) == H*(Rlim RT (G, Oc /p* (7)))[1/7)
k

where O¢ C C'is the ring of integers.

Even the statement that HS (G ,C) = CY% = K is non-obvious as the com-
pletion C of K contains much more elements than K.

The statement in Theorem [2.3| that HS (Gx,C(j)) = 0 for j # 0 implies that

C2C(j)

as G g-modules.
The combination of Remark [2.2] and Theorem [2.3] yields an interesting corollary.

Corollary 2.4. Forn >0,57>0
H" (X, Q%) = (HE (X7, Qp) ®g, C4))°F.

That is, the geometric information H" =7 (X, QJX / ) is encoded in the arithmetic
of the Galois action on H}, (X%, Qp). As a slogan: “p-adic étale cohomology knows
Hodge cohomology”.

The converse (“Hodge cohomology knows p-adic étale cohomology”) is not true:

e If X is an elliptic curveﬂ then Hj (X7, Q,) with its Galois action can detect
whether X has good or semistable reduction, but the Hodge cohomology
HY(X,0x) & HO(X, QY ) can’t.

e More concretely, if X = Spec(L) with L/K finite, then the Galois action on
HY(X,Qp) = [1;.,% Q, determines L (by Galois theory), but the vector
space H°(X,Ox) only determines the degree of L over K.

Corollary has a nice application to complex geometry, cf. [I4]. Recall that a
projective, smooth scheme Y over Spec(C) is called a smooth minimal model if the
canonical bundle wy is nef(=numerically effective), i.e., wy - Z > 0 for any curve
ZCY.

Theorem 2.5. [Veys, Wang, Ito] Let Y, Y' be two smooth birational minimal mod-
els, then

dime H (Y, ) = dime H/(Y', Q)
fori,7 > 0.

6or an abelian variety
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Proof. (Sketch) The schemes Y,Y” being birational and smooth minimal models
implies that Y, Y’ are K-equivalent, i.e., that there exists a diagram

Z
SN
Y Y’

with Z proper and smooth over C, f, g proper and birational, such that

["Ky = g Ky
Here Ky, Ky denote the canonical bundles on Y and Y’. This situation can be
spread out over a finitely generated Z-algebra A C C. As Hodge numbers are
locally constant for proper, smooth morphisms of schemes over (Qﬂ one can reduce

to the case A = Op|%] for F/Q finite and N € N large. We arrive in the situation
of a diagram of proper, smooth A-schemes

Z
RN
f
Yy V'

with f,g birational and f*Ky = §g*Kys. The theory of p-adic integration then
implies that

(1) V()] = [V (Fyr)
for all primes ! not dividing N and all £ > 0. Let us fix a prime p, not dividing

N. The equality and the Weil conjectures imply that the semisimpliﬁedﬁ Galois
representations

Hgt (yﬁ, ’ QP)SS = Hgt (y%l ) Qp)ss
are isomorphic for any [ not dividing pN. By Chebotarev this implies an isomor-
phism

Hgt(yfﬂ Qp)ss = H:ékt(y/fv @p)ss
of semisimplified global Galois representations. Now pick a place p|p and set K :=
F,. Then the semisimplified local Galois representations

He (Ve Qo)™ = He (Vi Qp)™

are isomorphic, too. The Hodge-Tate comparison Theorem 23] or rather Corol-
lary (plus a small argument handling the passage to the semisimplification)
imply that

diHlK]:Il(yK7 Q&K/K) = dimKHl(y}(, Qgi;{/K)
for all 7,5 > 0. This was the desired statement. ([

Another application of Remark is an algebraic proof of the degeneration of
the Hodge-de Rham spectral sequence.

"This can be tested after base change to C where usual Hodge theory applies.

8The Weil conjectures only imply that the traces of (geometric) Frobenius agree, but this
allows to conclude the equivalence on semisimplifications as the coefficients are of characteristic
0.
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Theorem 2.6. Let Y — Spec(C) be a proper, smooth schemeﬂ Then the Hodge-de
Rham spectral sequence

By = HI(Y.Q}) = Hi (V)
degenerates, where
Hig(Y):= H*(RT(Y,0 » Oy L QL 402 — )
denotes the de Rham cohomology of Y.

Proof. (Sketch) First reduce to the case that ¥ = X Xgpec(k) Spec(C) for some
K/Q, ﬁnit@ and some embedding K — C. It suffices to show

dime Hip (V) = Y dime H/ (Y, Q%)
i+j=n
for all n > 0. We now see that
dime HJR (Y)
= dimg, H"(Y(C),Qy)

dimg, H% (X7, Qp)
S dimg HY (X, Q)

i+j=n X/K
= 2 dmc HI(Y,04),
i+j=n

using various comparison theorems (de Rham vs singular, singular vs étale, co-
herent cohomology over K vs coherent cohomology over C) and the Hodge-Tate
decomposition Remark O

The de Rham cohomology HJi (X) of a proper, smooth scheme over K together
with its ﬁltratiorﬂ is a slightly finer invariant than the Hodge cohomology

P H(X, % x).
1+j=n
This leads to the following question:
Does the Gg-representation HY, (X4, Qp) determine HJ; (X) together with its
filtration?
Again the answer is yes. However, the result is more complicated to state than
the Hodge-Tate comparison as it involves Fontaine’s field Bqygr of p-adic periods.

Theorem 2.7 (“de Rham comparison”). For n > 0, there exists a natural G-
equivariant, filtered isomorphism

HE (X%, Qp) ®qg, Bar = HiR(X) ®K Bar-

Numerous authors have proven the de Rham comparison, Faltings, Scholze,
Beilinson, ...

9The statement holds true (by similar arguments) if C is replaced by any field L of characteristic
0, but it fails over fields of positive characteristic.

10and some prime p

HThe abutment filtration of the Hodge-de Rham spectral sequence.
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Remark 2.8. e Here Bggr is Fontaine’s field of p-adic periods, which is the
fraction field of a complete discrete valuation ring B;‘R with residue field
C, cf. '“| As such Bgg is naturally filtered by

Fil! Bag := ¢/ B, j € Z,

where & € Bd+R is a uniformizer.

e The G-action is diagonally on LHS, via Bgr on RHS. The filtration is via
Bggr on the LHS, and diagonally on the RHS.

e There exists a canonical isomorphism

gr'BdR = BHT = @C(]),
JEL
which implies that the de Rham comparison recovers the Hodge-Tate de-
composition by passing to the associated graded. Theorem therefore
implies that BSE = K.
e The case X =P, n=2in Theoremyields a canonical G g-equivariant

isomorphism

a: Qp(—1) ®q, Bar = Bar-
Thus, we see that Bqr contains a canonical G'i-stable line Q,t C Bggr
(where ¢t is not canonical), on which Gk acts via the cyclotomic character

Xcycl GK — Z1>7<7

ie., Qpt =2 Qp(1). Fontaine gave a concrete description for such ¢, namely

for e € T),(p1p (K)) a generator, set
t := log([¢]) € Bar.

The analogue of ¢t in complex geometry is 27i. The element ¢ € Bg‘R is a
uniformizer.

Assume from now on that X has good reduction, i.e., X = Xk is the generic
fiber for X — Spec(Ok) a proper smooth morphism. Let Xy be the special fiber
of X.

In this situation one gets a great refinement of Theorem [2.7} called the crystalline
comparison.

Theorem 2.9 (“crystalline comparison”). For n > 0 there exists a natural G-
equivariant, filtered p-equivariant isomorphism

Hg (X7, Qp) ®q, Beris = Heyis(Xo0/ Ok, ) @0y, Bexis-

Again many people have proven the crystalline comparison, Faltings, Tsuji,
Niziot, Bhatt/Morrow/Scholze... .

Remark 2.10. e Here Ky C K denotes the maximal unramified subexten-
sion. This implies that p is a uniformizer in the ring of integers Ok, of Ky
and there exists a canonical Frobenius lift ¢ on O K0E|

12This implies that abstractly B;’R 2 C[[t]], but there exists no such isomorphism which is
G i-equivariant: there exists Hodge-Tate representations, which are not de Rham.
13There is a canonical isomorphism of Ok, to the Witt vectors W (k) of the residue field k of

Ok.
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o H. (Xo/Ok,) denotes the crystalline cohomology of X, with respect to
Ok, which is, roughly, the de Rham cohomology of a smooth lift of Xy to
OKOE By functoriality there exists a natural Frobenius ¢ endomorphism
on H. (Xo/Ok,) (which is semilinear over the Frobenius on Ok, ).
The data H..(Xo/Ok,) with its Frobenius and the Hodge filtration over
K (coming from the crystalline-de Rham comparison) is an example of a
filtered ¢-module (D, pp,Fil*(Dg)) over K, i.e. a finite dimensional K-
vector space D together with an isomorphism ¢p: ¢*D = D and a decreas-
ing, separated and exhaustive filtration on the base change Dy := DRk, K.
e B..s denotes Fontaine’s ring of crystalline p-adic periods. Firstly, define

Acis 1= ngis((oc/p)/Zp), B:;‘is = ACTiS[l/p]'

By functoriality, there exists a natural Frobenius ¢ on A;s. It turns out
that BY. embeds into BCTR with image stable by Gk and containing t =

cris

log[e]. Finally,

Benis '= BX,_[1/1]

cris

and ¢(t) = pt.
e Inverting ¢ in Theorem [2.9] is necessary as can already be seen in the case
n=2X=P.

The analogous statement in ¢-adic étale cohomology, where ¢ # p, is the fol-
lowing: If f: X — Spec(Ok) is a proper, smooth morphism, then R* f,.(Qy)
is a local system on Spec(Og) and thus in particular, there exists a natural
G g-equivariant isomorphis

He, (A, Qo) = He (X5, Q)

where 7, s € Spec(Of) are the generic resp. special point. Similarly, for a
proper, smooth morphism f: Y — Y’ of smooth complex manifolds, the
pushforward R* f,(Q) is a local system.

e The linear algebra related to the crystalline comparison is more mysterious
than that of its f-adic counterpart, i.e. when HZ (X, Q) is replaced by
H} (X,,Qp) and H}, (X,, Q) by Hiy(Xs/Ok,). How can one pass from a
continuous G g-representation on a finite dimensional Q,-vector space to a
finite dimensional Ky-vector space with a Frobenius and a filtration (over
K)? This was Grothendieck’s question on the “mysterious functor”. This
question was resolved by Fontaine, who introduced the functors

Repg, (Gk) — {filtered ¢ — modules}
v — Dcris(v) = (V ®Qp Bcris)GK
Veris(D) = Fil’(D @, Bexis)?~" < D

In analogy with the (-adic case, one should expect that HZ, (X7, Q,) and Hy (Xo/ Ok, )[1/p]
contain “the same information”. That this is the case is the content of the theorem
“weakly admissible implies admissible” of Colmez and Fontaine, cf. [7]

MNote that we can’t take X here as X is just a smooth lift of X to O.

15This has the interesting corollary that the G k-action on HZ (A7, Q) is unramified, which
yields a cohomological obstruction for a scheme over K to admit good reduction. By [2.9] the
analogous statement for £ = p is that HZ, (X7, Qp) is crystalline. But note that crystalline repre-
sentations are unramified if and only if the inertia acts with finite image, which is usually not the
case (e.g., the cyclotomic character).
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Theorem 2.11 (“weakly admissible implies admissible”). The functors Deyis, Veris
restrict to equivalences between

{crystalline G g — representations}
and

{weakly admissible filtered ¢ — modules over K}.

Remark 2.12. e A representation V € Repr(G k) is called crystalline if
dimKD (Dcris(V)) = dlme V.
e The condition “weakly admissible” is related to the statement that the
“Newton polygon lies above the Hodge polygon”.

A sketch of proof of this theorem will be the aim of this course, cf. The
essential ingredient will be the Fargues-Fontaine curve, cf.

Xrr = Proj(@P(BL,)7")
d>0

over @, (a Dedekind scheme!) together with the relation of its (G g-equivariant)

vector bundles to Repr (Gk) resp. to filtered p-modules. The rings B ((1—1;)’ Bé:;b) yeee

are closely related to functions on Xgp (or related objects). For example, BJR will
be isomorphic to the completion of Xpr at some closed point co € Xpp.

3. LECTURE OF 23.10.2019: WITT VECTORS (BY BEN HEUER)

In our discussion of ramified Witt vectors and perfectoid rings we follow [9] 1.2.1.]
and [3, Section 3]@

The following innocent lemma, or rather "key lemma for everything”, is the
starting point for many constructions in p-complete rings. It expresses the fact
that the g-th power map is contracting for the p-adic (or m-adic) topology. Recall
that we follow the notations in [I

Lemma 3.1. Let A be a Og-algebra, I C A an ideal such that m € I. Let a,b € A
be two elements such that a =b mod I. Then

a? =b¢" mod I"+!

for any k > 0.

Proof. Tt suffices to prove that if a = b mod I* with k > 1, then
a? = b? mod I+,

Write b = a + ¢ with ¢ € T*. Then
b =a?+ ((i>aql—|—...—|—cq

and the terms different from a? on the right hand side lie in I**! as ¢ € I* and
mel. O

We now introduce the “tilt” of a ring.

16The presentation follows roughly the lecture, which was given by Ben Heuer.
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Definition 3.2. Let A be a m-complete Og-algebra. Then we set
A= lim A/m={(ao,a1,...) € HA/?T | alq = a;},
x—xd N

the “tilt” of A.

The ring A° is always a perfect F, = Og/m-algebra. Namely, the ¢-Frobenius on
A’ is has as inverse the map

(ao, ai, .. ) — (al,aQ, .. )
Thus the tilt defines a functo)
=) {m — complete O — algebras} — {perfect F, — algebras}.
g q g

The tilt can be “rather small”, e.g., (’)?5 = TF,. If Ais a perfectoid Og-algebra,
cf. Definition [3:12] the tilt is however “rather large”.

As another application of Lemma [3.1] we mention the following invariance of
g-power compatible systems of elements under pro-infinitesimal thickenings.

Proposition 3.3. Let A be a m-complete Og-algebra, I C A an ideal such that
m € I and A is I-adically complete. Then the canonical morphism (of multiplicative
monoids)

is bijective.

In particular, the LHS side acquires naturally a ring structure. Explicitly, if
(ag,a1,...),(bo,b1,...) € @ A, then

r—xd

(a0, a1,...) + (bo, b1, ...) = ( lim (an + b,)?", Jim (ap + b)),
Proof. Let x = (z0,71,...) € (A/I)’ and lift each z; to some #; € A. We claim

that the sequence {ig[}izo C A is a Cauchy sequence for the I-adic topology. To
see this let j > i. Then by the key lemma Lemma [3.]

a??J = :ifi mod I**!
as
=ux; =Z; mod I.
Thus, setting ‘

2t = lim il eA

1—00

is well-defined. A similar application of Lemma implies that z! is independent
of the choice of lift Z;. Thus

(=) (A/T) = A
is a well-defined, and multiplicative, map and
(A/1) = lm A, @ (2, (@9)F, ).

r—xd

is the desired inverse. (I

7The r-adic completeness is not necessary, we only put it as we will only consider the tilt of
m-complete rings.
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If A/7 is perfect, then A/m = 1&1 A/m, a v (a,a'/9,...) is an isomorphism and
Frob
the multiplicative map

Y
[—]:A/wgéi%A/w%A

is classically called the Teichmiiller lift. The Teichmiiller lift defines a natural,
non-additive (1), section of the projection A — A/m.

In particular, if A is a w-complete, m-torsion free Og-algebra, then we can write
each a € A uniquely in the form

with z; € A/7 and thus as sets
A (A/W)N, a+—r (ai)i20~
But what can be said about the ring structure on A? As a motivation let’s try for
o0

given x = Y [x;]7',y = > [ys]7" € A to find the sequence (2;);>0 such that

i=0 i=0
r+y= Z[zl]wz
i=0
Calculating modulo 7 shows
[zo] + [yo] = [20] mod 7

and thus necessarily
20 = To + Yo-
Calculating modulo 72 we find
[21]m = [o] + [yo] — [w0 + yo] + 7[1 + y1] mod =°
and thus we are seeking to divide [zo] + [yo] — [z0 + o] by 7. Now
o+ 5’ "] = g/ ] + [y mod m
and thus by Lemma (3.1

o +v0] = g’ * + 30" )" = ([20”] + [/ = D (q) [y [y ~"*) mod =

=0

But 7(?) for 1 <i < ¢ —1 (as 7[p) and thus

[0 + o] — [zo] — o] _ <= ()

and we can set

The upshot is that there exists universal formulaﬂ for the z;,7 > 0, although these
are rather useless and complicated (cf. Example [3.6]).

181y particular, the Og-algebra A is uniquely determined by the requirements that A is 7-
adically complete, m-torsion free and A/7 is perfect.
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Fortunately, the strange ring structure on (A/7)Y, making it isomorphic to A,
can also be introduced by more abstract reasoning. This works as follows and yields
the ring of (ramified) Witt vectors.

Set

n .
an. = Z?TiX;l”ﬂ S OE[X07 L. ,Xn].
=0

(If E = Qp, 7 = p these are the classical Witt polynomials, leading to the classical
Witt vectors as, for example, discussed in [23].) Define the functor

F: (Op — alg) — (Sets), A+ AN,
Note that we consider F as a functor on all Og-algebras even though in the end
we will only be interested in the case that A is perfect.
Lemma 3.4. There exists a unique factorization

(O — alg) —rs (Sets)

(Op — alg)
such that for any Og-algebra A the natural transformation
(2) WTK‘,A: WOE,ﬂ'(A) — AN, (ao, ai, .. ) — (an—(ao, ey an))nzo

is a morphism of Og-algebras.

Remark 3.5. In other words, for any Og-algebra there exists a natural ring struc-
ture on
Wo, »(A) = AV
such that Equation is a homomorphism of rings. The ring Wo,, (A) is called
the ring of ramified Witt vectors of AH
Note that if 7A = 0, then

2
Wi alag,a1,...) = (ag,ad,ad ,...).
Thus, even if one is only interested in Og-algebras A with 1A = 0, it is important

to consider the functor F on all Og-algebras. Lemma is taken from [9, Lemme
1.2.1].

Proof. We claim that if A is a mw-torsion free Og-algebra with a lift ¢: A — A of
the g-Frobenius, i.e., ¢(a) = a? mod m, then the natural transformation
Wea: Wopr(A) = AN, (ap,a1,...) = War(ao, - an))n>0
is injective with image
{(b:)is0 € AN | biy1 = @(b;) mod w1},
This in particular implies that W 4 is bijective if 7 is a unit in A. The injectivity

follows from the definition of the polynomials W, . and m-torsion freeness of A
(and does not require the existence of a Frobenius lift). Moreover,
i
i1y ,
Witi,x(ao,a1,...,04:41) = ija‘;- = W, .x(ag,...,a;) mod 7",
j=0

19Up to canonical isomorphism, it does not depend on 7, cf. [9] Definition 1.2.2.].
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Let (b;)i>0 € AN be a sequence of elements in A such that b;11 = ¢(b;) mod 7it?

for all 4 > 0. We have to construct a sequence ag, ay, ... of elements in A such that

W-,.—7A(CL0,CL1, . ) = (ag,ag +7Ta1,. . ) ; (bo,bl,. . )

That is we have to solve inductively the equations

i
; P
1+1 _ q
s ai+1 = bi—i—l — E 7Tjaj

Jj=0

for i > 0, i.e., we have to show that the RHS is 0 modulo 7?*!. For this we calculate,
using the assumption on the b; and induction,

biv1 = (b)) = (Wi x(ao,...,a;)) = z:ﬁj‘,o(aj)ql_'7
j=0

modulo 7**1. Thus it suffices to see (set kK = i — j) that for each a € A and any
k>0

k+1 k

a® = p(a)?
modulo 7%+, This follows from the following lemma Lemma as

a? = ¢(a) mod .

As ¢ is a homomorphism we see that for a m-torsion free Og-algebra A with Frobe-
nius lift ¢ the image of W, 4 in AN is stable under (coordinatewise) addition and
multiplication. In particular, by transport of structure the lemma follows when F
is restricted to the full subcategory of m-torsion free Og-algebras A which admit a
lift of the ¢-Frobenius on A/w. The case of general A now follows by considering
the universal cases which are polynomial rings (and these admit a lift of Frobenius).
We leave the details as an exercise. (]

Example 3.6. We spell out the formulas for addition and multiplication in low
degrees (just to convince the reader that they are rather complicated).

(ao,al,. . ) + (bo,bh. . ) = (60701,62, .. )
(ao,ah...) . (bo,bl,...) = (d/o,dl,dg,...)

with
CO = ao + bO
<I+bIZ7 +b q

.- 1+ by + e

2 2 2

Q+bf1_ +bq+ (Ibe_II
ca = as + by + 200 (8o (.),1.)2 m(eith —cl)
C3 = as + b3 + ...
dy = ag - by
diy = agbl + albg + ma1by

2 2
aq bq+aqbq _dq 2 2

dy = AT 4 ad by + afb] + aobl + m(axb] + afby) + wazbs
ds =

where the division by 7 is meant to be the one in the universal case. If p =7 =2
and £ = Q,, then ¢; and ¢z are more explicitly

¢ = ay + b1 — agbg
co = ag+by— agbo — 2a(2)b(2) — aob‘rf —aib; + (a1 + bl)aobo.
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In the general case, the formulas for the Og-linear structure on We,(A) are also
computable. First of all, for @ € A and (ag, a1, as,...)
(a,0,0,...) - (ag,a1,as,...) = (aag,alay, aqzag, o)
(the element [a] = (,0,0,...) is the Teichmiiller lift of a from Proposition [3.7) and
7 (ag, a1, az,...) = (7ag, al +ay — 77 bg, . ..)
This makes explicit the O = Wo, (F4)-linear structure.

We list some properties of the functor of Witt vectors (all of these can be proven
similarly as in Lemma , by reducing to the case of polynomial algebras over
Og, cf. [23].

Proposition 3.7. (1) There exists the natural multiplicative, non-additive Te-
ichmdiller lift

[—]: A= Woy (4), a— [a] :=(q,0,...).
(2) There exists a natural ring homomorphism
F: W@E’W(A) — WOE,TK‘(A)

lifting the q—FTObem'usH. If mtA =0, then FF = Wo, -(p) is induced by the
q-Frobenius on A/ by functoriality and we will write again ¢ for F.
(3) There ezists the natural Og-linear morphism

Va: Wo, <(A) = Wo, (A), (ag,a1,...)— (0,a,a1,...)
which furthermore satisfies

FVy =m and Vo (F(x).y) = .V (y).

WOEJT (A) = I&H WOE;T"(A)/VT:LWOE,W (A)

and any element a € Wo, = (A) can be written uniquely in the form

a= ZV:[an]

n>0

for some a,, € A, n > 0.

(5) If tA =0, then VxF = and F([a]) = [a9].

(6) If TA = 0 and A is perfect (i.e., the Frobenius A — A, a — a? on A
is bijective), then VIWo, (A) = 7"Wo, <(A), Wo, -(A) is m-adically

complete, m-torsion free with Wo, »(A)/m = A and every element a €
Wo,.x(A) can uniquely written as

a=3"r"[d]

n>0

with a], € A.

29E.g. F((ao,a1,...)) = (a + ma1,...) and F([a]) = [a].
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The case @ of a perfect F,-algebra will be the only one we need. We note that
in Item

Vilan] = 7" [F7" (an)],
ie., a, = al ". Tt can easily be seen that Wo, .(A), the Teichiiller lift and the
Frobenius do not depend (up a canonical isomorphism) on 7 (but clearly, V, does
as FV; = ). For details see [9, Section 1.2.1.]. From now on we will therefore
supress 7 and simply write We,, instead of Wo,, .

In the perfect case it is possible to reduce the construction of the ramified Witt
vectors to the classical one (where E = Q,,, 7 = p) because of the following lemma.

Lemma 3.8. Let A be a perfect Fy-algebra and let Ey C E be the mazimal unram-
ified subextension of E. Then

W(A) ®OE0 O = WOEJF<A)
as Og-algebras.

Note that O, = W (F,), thus W(A) is naturally a W (F,)-algebra. We leave the
construction of a concrete isomorphism as an exercise, cf. [9, Lemma 1.2.3].

Proof. Both rings are m-adically complete and w-torsion free with perfect quotient
A. This implies that they must be isomorphic as can either be seen by the concrete
arguments we presented before Lemma[3.4]or by vanishing of the cotangent complex
L/, (which implies that A deforms uniquely along any nilpotent thickening, cf.
[2, Example 3.1.7]). O

In the perfect case, tilting, cf. and Witt vectors are related by an adjunction,
cf. [9, Proposition 2.1.7.].

Proposition 3.9. The functor
(=)’: {7 — complete O — algebras} — {perfect F, — algebras}
is right adjoint with left adjoint given by the functor Weo, (—).
Before proving Proposition we make some remarks.
Remark 3.10. e The unit
R — Wo,(R)’ = lim (Wo,(R)/7) = lim R,

r—xd x—xd

which sends r to (7",7"1/‘1,7‘1/‘12, ...) is an isomorphism. In particular, the
functor Wo, (—) is fully faithful. Its essential image is given by m-complete,
m-torsion free Og-algebras A, s.t., A/7 is perfect.

e The counit §: W, (A°) — A is called Fontaine’s map 6.

Proof. (of Proposition [3.9) We only give the construction of the counit 6 and leave
the necessary verifications as an exercise. Fix n > 0. By definition of the Witt
vectors the morphism

Wyt Wo (A) = A/a" L, (ag,a1,...) — Zafuiiﬂi
=0
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is a morphism of rings. If all a; = 0 mod =, then by the “key lemma”, cf. Lemma[3.1]

al!’ =0 mod 7"~ for each 0 < < n. This implies
n

Za?nﬂﬂ'i =0 mod (7"*1),
i=0

i.e., W, factors over We, (A/7). Call the resulting map
On: Wopn(A/m) — A/m"
One checks that the diagram

On+t1

Wogn1(A/m) —— A/m"+?

Wop n(A/T) LA/W"'H

where F denotes the Witt vector Frobenius (which is induced by the g-power Frobe-
nius of A/7), and “can” the canonical projection. Passing to the limit yields there-
fore the map

0: Wo, (A") = limWo,, n(A/7) = A= lim A/z"
n,F n

which serves as the counit. O
Using the (—)u—map from we can give a more concrete description of f-map.

Lemma 3.11. For a w-complete Og-algebra the map
0: Wo, (A°) = A
00 . 00 )
is given by > |a;]mt — > a?ﬂl.
i=0 i=0

Proof. This is a good exercise in unravelling the constructions. O

We now will introduce (perfect) prisms and perfectoid rings. For this lecture the
following definition is convenient. See [3, Theorem 3.9] for its relation to former
definitions of perfectoid rings, e.g., in [I].

Definition 3.12. (1) A perfect prism over OF is a pair (We,(R),I) with R a
perfect Fg-algebra, I C We, (R) an ideal generated by some d € Wo,(R),
s.t., M € Wo,(R)* (ie., d is “distinguished”) and We,(R) is I-
adically complete.
(2) An Opg-algebra A is perfectoid if A =2 We, (R)/I for some perfect prism
(Wo,(R),I) over Og.

Remark 3.13. e An element
d="Y[ri]r" € Wo,(R)
i=0
is distinguished if and only if 11 € R* as
F(d)—d?
0

= r; mod 7.
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If d is distinguished, then We, (R) is (d)-adically complete if and only if R
is rg-adically complete.
o Perfect F,-algebras are perfectoid by taking d = .
o If AWy, (R)/I is perfectoid, then
A= (Wo, (R)/1) = (Wo, (R)/(m, 1))’ = R
by Proposition [3.3]

The last remark motivates the following definition of an “untilt”.

Definition 3.14. Let R be a perfect Fy-algebra. An untilt of R over OF is a pair
(A, 1) of a perfectoid Op-algebra A and an isomorphism ¢: A’ = R.

With this definition one checks that for any perfect IF,-algebra R one obtains an
equivalenc@

{ untilts (A,¢) of R over Og} = {I C Wo,(R), s.t. (Wo,(R),I) is a prism}.
With this terminology the tilting equivalence from [I9] becomes an easy exercise.

Exercise 3.15. Let A be a perfectoid Og-algebra. Then the functor

~

{ perfectoid A — algebras } = { perfect A’ — algebras }
B > B

is fully faithful with essential essential image all perfect A’-algebras, which are
(m, I)-adically complete when writing A = Wp, (Ab)/I
We now give the most important example of a perfectoid ring for this course.
Proposition 3.16. Let C' be an algebraically closed, non-archimedean extension of
E with valuation v: C — RU {oo}. Then the ring of integers
Oc:={zreC|v(z) >0}
is a perfectoid Og-algebra.

Proof. Let 7'/7" € O¢, n > 1, be a compatible system of ¢"-th roots of 7. This
yields the element

b . 1/q 1/¢° . ~ P
= (m,m /T L )€ lim Oc =20
zﬁq ¢

in the tilt of O¢. We claim that
£:=m—[n]
generates ker(6: Wo,(0%) — O¢). As 0 is also surjective (because C is alge-
braically closed), this implies that O¢ is perfectoid. We first show that
Oc/m = 0% /n.
Namely, let
y= (Y0,y1,---) € @ Oc = O,

x4

2161 the obvious notions of morphisms

225 a hint, prove that if Wo, (R, I) = (Wo,(S),J) is a morphism of prisms, i.e., I is send
to J, then necessary J = IWp, (S).

23We thank Ferdinand Wagner for pointing out an error in a previous version of this exercise.
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Then 7° divides y if and only if for all n > 0 the element 7/4" divides 7,,. Because
Oc¢ is a valuation ring this happens if and only if v(y,) > ¢ "v(x) for all n > 0.
This occurs if and only if v(yo) > v(7) as v(y,) = ¢ 'v(yo), i.e., if and only if

1o = 0 mod w. We have therefore proven that

Y
ker(0% L5 O = Oc /(1)) = (7).
Because the f-map is surjective, we can conclude that
Op/(7") = Oc/ ().
Now we can prove that ker(: Aj,; — O¢) is generated by ¢ = m — [1°]. First note
that
Or—[]) =7 — (x")f=nr -7 =0,

o0

that is £ € ker(f). Let x = > [z;]n" € ker(f). Then
i=0
0=10(x)= fowl
i=0

which implies
t—

x5 =0 mod 7.
As 0% /(n°) = O /() this implies
7 |zo
and thus that we can write
2 =[]z + (1 = [7])z0
for some x1, zg € Aj,r. Now,
0=0(z) = 0([x")x1) = 70(x1)

which implies that x; € ker(f) as m is a non-zero divisor in O¢. Continuing the
argument with z; instead of z, we see that we can write

x=E(z0 + [7)(z1+...)) € ()

where the infinite sum converges as v([7°]) > 0. This finishes the proof. O
We leave the following proposition as an exercise.

Proposition 3.17. Let S be a ring and let w € S be a non-zero divisor such
that w?|p, S is w-adically complete and the Frobenius ¢: S/wS — S/wPS is an
isomorphism. Then S is perfectoid.

Proof. Exercise. 0

Let C/E be a non-archimedean algebraically closed field with valuation
v: C = RU{oo}.
Recall that by
Op = lim O¢/m = lim Oc
Frobg —xd
via the map
x s (af, (V).

We want to analyze O%. The following lemma is [9], Section 2.1.3.].
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Lemma 3.18. The ring Obc s a valuation ring with associated valuation given by
VO - RU{oo}, x> v(ah).
Moreover, O% is complete for its valuation topology and its fraction field C* :=

Frac(0%) is algebraically closed.

In particular, C” is a non-archimedean, algebraically closed field. One can check
that (as multiplicative monoids)

cbgyﬂa

T—xd

Proof. Tt is clear that 1°(zy) = v"(z) + v’ (y) for z,y € O because the (—)*-map
is multiplicative. Moreover, v°(x) = oo if and only if # = 0. We have to show that
z/b(—) satisfies the non-archimedean triangle inequality. Let x,y € Obc. Then

Ve+y) = vz +y))

= v(lim (") + (y"/a")F)e")

n—roo
= T (@) ()
n—oo
lim g"inf(v((z"/4")%), v((y"/*")"))
n—oo
= inf(1’(2), ().

Next we will prove completeness of (’)bc. For this it suffices to show that the valua-
tion topology induced by I/b(f) agrees with the inverse limit topology on

Obc 2 lim O¢

r—xd

v

as O¢ is complete for its valuation topology. But a basis of neighborhoods of 0 for
the valuation topology for v”(—) is given by the subsets

{z € Obc | I/b(l’) >m}
for m > 0, while the system of subsets, n,m > 0,
{z € Op [v((@/7)F) = m}
is a basis of neighborhoods of 0 for the inverse limit topology. As
(@) = 1/q" (x)
these two systems of basis agree, which implies that the two topologies are the same.

This finishes the proof of completeness. Let us now show that C” = Frac(O%,) is
algebraically closed. Let

F(T) € Op[T], f(T) =T+ ag1 T + ... + aq,
be a monic polynomial It suffices to show that f(T') has a zero in Obc. Set
FulT) i= T+ (al/TVTH 4 4 (al/ ) € O[T
Then
frn1 (D) = fo(T?) mod 7.

Fix some n > 0 and let x € O¢ be a zero of f,. Choose moreover some y € O¢
such that y? = . Then

V(fnt1(y)) = —v(m)

2475 Obc is complete it suffices to consider monic polynomials with coefficients in Obc.
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by the above congruence. Let z1, ..., 25 € O¢ be the zeros of f,+1. Then

V(fnia(y) = ) vy —z) =
which implies that there exists some ¢ such that

v(y — z;) > —v(m).

dq
Then
v(z—z]) >

v(m).

By induction we therefore obtain a sequence (z,,),>0 such that z,, € O¢, fn(x,) =0
and

S

1
v(xh g —n) > EV(T(‘).
Set
a:={yeOc|v(y) =

v(m)}

ISHE

Then

2= (Tn)nx0 € lim Oc/a 2 lim O¢ /7 = O,
Frob Frob

where we used Proposition to identify the two limits. Clearly, f(x) = 0 as
desired. 0

4. LECTURE OF 30.10.2019: THE RING A,¢

According to Colmez, cf. [6], the ring A;,¢ is the “one ring to rule them all”,
namely all other rings like Bqr, Beris,-.. are derived from Aj¢.

We need the notation introduced in Section (1} i.e., p is a prime, E/Q, a finite
extension, O its ring of integers, # € O a uniformizer, F, = Og/(n), F/F, a
non-archimedean algebraically closed field with valuation v: F' — RU{oo} and ring
of integers Op := {z € F | v(z) > 0}.

In this setup we can define the ring A;,¢, Fontaine’s first period ring.

Definition 4.1. We define
Aint = At p = Wo, (OF)
as the ring of ramified Witt vectors of the perfect IF;-algebra Op, cf. Lemma
As Op is a perfect Fy-algebra we know by Proposition that

Ains = {Z[xn]ﬂ'n | Ty € OF},
n=0

that is, Aj,r is a ring of “power series in 7 with coefficients in Or”. However, the
addition and multiplication are much more complicated than their counterparts for
the ring

Op|[u]]

of usual power series with coefficients in O (as can be seen from [3.6). We let

Q= F: Ainf — Ainf
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be the Witt vector Frobenius, or equivalently the morphism induced by the Frobe-
nius on Op. Thus,

p(D_lwalm™) =) fedln".

On Op[[u]] the analogous morphism would be the arithmetic Frobenius

o0

o3 ) = 3
n=0

n=0

which leaves u fixed. The ring Op[[z]] is a non-noetherian local integral domain
which looks as it could be of Krull dimension two. But it isn’t, the Krull dimension
of Opl[[z]] is infinite. The intuition that Op[[u]] “is” 2-dimensional is supported by
the fact that Op|[[u]] can naturally be interpreted as the ring of bounded functions
on 1-dimensional the rigid-analytic open unit disc

Dp :={z | v(z) > 0}

over F', which is one-dimensional. We will not introduce rigid-analytic or adic
spaces and contend ourselves with the statement that for each a € mp, there is the
natural evaluation morphism

eve: Op[[u]] = F, f(u) — f(a)

with kernel (u — a). The exotic prime ideals on Op[[u]], which imply that Op[[u]]
is of infinite Krull dimension, are all contained in the prime ideal mp[[u]]. Apart
from these Spec(Op[[u]]) can be described completely.

Theorem 4.2. The spectrum of Op[[u]] is given by
Spec(Op|[u]]) = {(0), (mp,u)} U{(u—a) | a € mp} U Spec(Op|[u])mpu))
where Op[[u]]m () denotes the localization of Or[[u]] at the prime ideal mp[[u]].

Note that for a # b € mp the prime ideals (u — a) and (u — b) are distinct.

Proof. Clearly, the mentioned ideals are prime. Assume that q C Op[[u]] is any
prime ideal, which is not contained in mpg[[u]]. Then there exists an element

flu) = inui €q
i=0

for which some z; € OF is a unit. Set
d:=min{i | z; € Op}

According to Weierstra$} factorization, cf. [4] or [16], the element f can be written
as a monic polynomial g(u) € Op[u] of degree d times some unit in Op[[u]]. In par-
ticular, g(u) € q as q is prime. But then by our assumption that F is algebraically
closed

e
=
!
—.

(u— a;)

for some a; € O and some (u — a;) must lie in g, which finishes the proof. O
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The first part of the course will be devoted to prove analogous statements, in
particular the factorisation occuring in the proof of Theorem for Ajyr. As a
start, it is clear that the ring A;,¢ is a non-noetherian, local integral domain, which
is (, [w])-adically complete for all w € mp \ {0}, where mp := {z € F | v(z) > 0}.

The chain of prime ideals

0¢ | @A € Wo,(mp) ¢ (7, Wo, (Or))
weEMpg
shows that A, is at least of Krull dimension > 3. However, similarly to the case
of Op[[u]] the Krull dimension of A, is in fact infinite.
Theorem 4.3 (Lang-Ludwig [15]). Spec(Aint) has infinite Krull dimension.

Again, all the “exotic” prime ideals predicted by Theorem are contained in
WOE (mF ) .

Contrary to the case of Op[[u]] it is much less clear how to interpret Ajn¢ as some
ring of functions on a geometric object. In fact, for the sake of simplicity we will
only introduce a weak substitute for D Fﬁ

Definition 4.4. We define
[Y[j0,00) := {1 € Aint | I generated by a distinguished element},
i.e.,

Y [0,00) = {(umr — [a]) € Ains | u € A

infs @ € mF}'

Moreover, we set

Y] := Y 0,00) \ {(m)}-

In the case of Op[[u]] the analogous definitions would exactly recover the sets
mp and mp \ {0}. Note that by Exercise the set |Y[9,o0) is in bijection with
the set of isomorphism classes of untilts of Op and |Y| with among these with
the m-torsion free untilts of Op. Proposition [3.16] supplies us with a lot of these
untiltsm Moreover, note that in the notation of Proposition m

Aing/(r — [7]) = Oc
for every choice of 7 = (m,7/4,...). In particular, the map
me = [Yljo,00), @ (7 —[a])

is not bijective (but we will show that it is surjective, cf. Theorem [5.4)).

The picture [1] of Ajp¢ is helpful (see also [?, Page 83, Figure 5]).

We will analyze the ring A;,¢ further. Recall that for C/E non-archimedean and
algebraically closed, there is an isomorphism

Oc = Aine/(§)
with € := 7 — [x], cf. Proposition
Definition 4.5. We define
Bd+R = B:irR,C = Airlf[1/77]gA
as the &-adic completion of Aj¢[1/7].

25Although there exists a reasonable geometric replacement, cf. [?, Section 11.2].
26We will see in that this example covers all untilts of Op.
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(m, Wo, (mr)) (m)

FIGURE 1. A picture of Spec(Aj,¢). The arrow indicates the action
of . All mysterious prime ideals are “close” to We, (mp).

By [2, Tag 05GC]
By 2 lim Auye[1/7] /6"

n

and
Blr/¢=C.

Lemma 4.6. The morphism Ay — BCTR 18 injective and the two local rings B;R,
Ajnt,e) are discrete valuation rings.

We remark that this statement can be interpreted as giving |Y| at the point

y := (7 — [7°]) a bit more geometric structure, namely the complete DV

+ _nhA 5
BdR,y - OIY\,y

and, in particular, the residue field Cy := Ajne/y[1/7] of |Y| at y.
The field of fractions Bgr of B(J{R is called Fontaine’s field of p-adic periods (for
Q).

Proof. As £ € Ayyr is a non-zero divisor and O¢ is m-torsion free, the ring

A&inf /fn

is 7-torsion free for each n > 0, i.e., Ajnr/E™ — Ay /E™[1/7] for each n > 0. By
left exactness of I&n one can concludﬁ that

Aing = lim Aine /€" — BJy.

To see that BIR is a discrete valuation ring we use [?, Tag 05GH], which implies
that by completeness Bg‘R is noetherian. Moreover, B(‘IR is local, with non-zero
maximal ideal generated by one element, of Krull dimension at least ﬂ and thus
a DVR. We can conclude that the localization Aj.¢ ¢) is a DVR, too. Namely, pick

27The plain localization Ajp¢, (¢) is not so useful and only mentioned for completeness.

28We used that Ay is (m, [#®])-adically complete and [?, Tag 090T] to conclude that Ay is
also &-adically complete.

2935 Ajpr — B(J{R.
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p C Ajng ¢y a prime ideal such that £ ¢ p. Then p C (), which implies that for
a € p also a/€ € p. In other words,

Ep=p.
But, using that Ainfy(E)B:R and that B(;“R is a DVR, this implies that p = 0. Thus,

Spec(Aint,¢)) = {(0), ()}
which implies that Aj.¢ (¢) is noetherian by [IT, Chapitre 0, Proposition (6.4.7.)]
and thus a DVR. O

The ring
B, = lim Aune[1/p1/(6)"

has two topologies. On the one hand, its topology as a valuation ring, i.e., the
inverse limit topology with each Ai¢[1/p]/ (€)™ given the discrete topology. On the
other hand the inverse limit topology for the topology on Ain¢[1/p]/(£™) such that
Aing /(€)™ is open with the p-adic topologym The second topology is called the
canonical topology on B('i"R. For both topologies the ring BJR is complete.

We make a short digression to explain the name “Aj,¢”,cf. [10].

Definition 4.7. Let R be a m-complete Op-algebra. A surjection D — R of Op-
algebras with kernel I, such that D is I + (r)-adically complete is called a m-adic
pro-infinitesimal thickening of R.

For example, if R = O¢ or R = O¢/w, then Fontaine’s map
Ainf — R

is a pro-infinitesimal thickening.
The following lemma explains the terminology ” Aj,¢”.

Lemma 4.8. Let R € {Oc¢,Oc/p}. Then Ayt is the universal w-adic pro-infinitesimal
thickening of R, i.e., for each m-adic pro-infinitesimal thickening D — R exists a
unique morphism Ay — D over R.

Proof. Proposition implies that D = R’. By Proposition there exists
therefore a morphism Aj,; — D reducing to the canonical isomorphism D’ = R’
on tilts. One checks that this morphism is unique. (]

Now, assume that E = Q,. In characteristic p (or mixed characteristics) infini-
tesimal thickenings with a PD-structure are usually more interesting.

Definition 4.9. Let R be p-adically complete. A p-adic PD-thickening of R is a
triple (D, D — R, (s )n>0) where D is p-adically complete, D — R is a surjection
and (Vn)n>0 is a PD-structure on J := ker(D — R) compatible with the canonical
PD-structure on (p).

For all facts related to PD-structures or crystalline cohomology we refer to [?,
Tag 07GI].

Remark 4.10. (1) If D is p-torsion free, then necessarily v, (z) = %l for z €
J.

301f R is any ring and f € R a non-zero divisor, then there exists a unique topology on R[1/f]
making R[1/f] a topological ring such that R is open and the subspace topology on R is the f-adic
one.
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(2) For z € O¢
1
v(z"/nl) >0foraln >0 v(z)> 711/(1)).
p—
This implies that {z € Oc | v(x) > S23v(p)} C Oc is the largest ideal
admitting divided powers.
Looking at the universal divided power envelope of O¢ (or equivalently O¢/p)

yields the important crystalline period ring Ay of Fontaine.
Definition 4.11. We define
Acrys
as the universal divided power envelope of ker(6: Ajys - O¢) = (§) and
Bl = Acrys[1/p).

crys

By the definition of the crystalline site
ACY}’S = HCOrys(OC/ZP) = ngys((OC/p)/Zp)

This explains the name of Ac.ys. More concretely,

n

£ ~ A &
Acrys = Ainf[m ‘ n = 0]1/)\ = Ainf@ZP[z]DZP[z]((J;));\

where Z,[x] = A,  — € and

R "
Dz, ((2))p = Pz - — = Zplyo yrs vz -/ (Yo — 2,97 = pyo. vz — Py, - Ny
n>0 )

is the free p-complete PD-algebra on one generator. In particular,
Acrys/p = OC/p ®1Fp Fp[yla Y2, - - ]/(y€7 yg7 .. )

is a rather horrible non-noetherian, non-perfect ring. Every element in A..y can
(non-uniquely) be written as
n
Sy
n!

n>0
with a, € Aj,r converging to 0 for the p-adic topology.

Lemma 4.12. The natural morphism A,y — Bd+R extends to an injectioﬂ

B}, — Bix.

crys

Proof. We claim that the natural inclusion

n

Ainf[%‘ | n>0] = Bjy

is continuous for the p-adic topology on the left and the canonical topology on the
right. But for each m > 0 the image of

Amf[%\n > 0] = Ame[1/p]/(€™)

is contained in 1/(m — 1)!Aj,¢/(£)™ because each % with n > m maps to 0. This
implies continuity. By completeness of BCTR for its canonical topology we obtain
the extension

Acrys = Big-

31Bven Q,, ®qun Bdiys = By is injective, cf. [5].
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Each element x € A.;ys can be written in the form
_ "
Xr = Z anﬁ
n>0
with a,, € Ajys converging p-adically to 0. Assume that x # 0. As
ker(@: Ainf — Oc) = (f)

we can assume that 6(a,,) # 0 for some n > 0. But then = cannot map to 0 in Bz
as its (§)-adic valuation is

inf,,{a, # 0} < 0.
This finishes the proof. (I

We note that Acys depends on C, but Ajy¢ only on the tilt C’.

5. LECTURE OF 06.11.2019: MORE ON A;.¢

For general notations see Section [I] Let us make a side remark about the oc-
currence of the two fields F, E. For this, let K/Q, be a discretely valued non-
archimedean field with perfect residue field and let X — Spec(K) be a proper and
smooth morphism. Of interest in p-adic Hodge theory is the p-adic étale cohomol-
ogy

Hgt(va Qp)
of X. Thus, there are implicitly two non-archimedean fields involved, namely,

Qp
as the field of coefficients and
C:= %,
the completion of an algebraic closure K of K. In the setup for the Fargues-Fontaine
curve the field E replaces the field Q, and F plays the role of C' (note that one can

for example set F' as the fraction field C” of (’)bc, cf. Lemma [3.18]).
We now introduce primitive elements in Aj,¢.

Definition 5.1 (cf. [, Section 2.2.1.]). An element

oo
x = Z[azl]ﬂ'l € Aiyr
i=0
is called primitive if zy # 0 and there exists d > 0, such that z4 € OF. The degree
of a primitive element x is defined as
min{d | z4 € O} }.
Furthermore, we denote by Prim, the set of degree d primitive elements.
For example, Prim is precisely the set of units in Aj,¢ and if x € Primy, then x

is distinguished in the sense of Definition Clearly, each distinguished element
which is not a multiple of 7 is primitive of degree 1. Thus, with Definition [4:4]

|Y] = Prim; /A

inf"

From Proposition [3:16] we obtain an injective map

{(C, 1) | C/E non-archimedean, algebraically closed, 1: O% = O} < |Y|
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and we wish to show this map is surjective. Thus let u € A, and ap € mp \ {0}
and set

a = urm — [ag] € Primy, D := Aie/(a), 0: Ajps - D.
We have to prove that D is isomorphic to the ring of integers O¢ in a non-
archimedean, algebraically closed extension C'/E. We follow [9, Section 2.2.2.].

Proposition 5.2. (1) D is w-complete and w-torsion free.

(2) D* = Op.

(3) The map D — D, x — xP is surjective.
Proof. The sequence (m,a) is regular. As Aj,¢ is m-complete this implies that the
sequence (a, ) is regular, tooﬁ This proves 1). By Proposition

D’ = A’ = Op,
which shows 2). For 3): Let Ey C F be the maximal unramified extension. There
exists a norm morphism
Ng/gy: Aintpr = Wop(OF) = Aintg,,r = W(Or)
which sends primitive elements of degree 1 to primitive elements of degree 1 (this
can be checked on We (k) — W (k) and uses that FE/FEy is totally ramified). One
checks that the resulting morphism
DI = Ainf/(NE/EU (a)) — Ainf/((l) =:D

is surjective, which reduces us to the case that £ = Fj, and then to £ = Q,. Let

0: Aing = D, Z[xn]ﬂ'” — Z O([zn])m"

n=0 n=0
be the natural projection. It is clear that every element
0([=])

with z € Op has a p-th root. We can write each = € D in the form
2=y 0([za))0([ao))"
n=0

with v(z,) < v(ag), n > 0, because D is 6([ag]) = 0(u)m-adically complete. Multi-
plying with
O([wnoap) ™
where ng is the least integer with x,, # 0 we may assume that
z€l+ (p,mp),
ie., that zp € Of. We claim that there exists z € OF, such that
r = 60([2]) mod p*.
(resp. x = 0([z]) mod p3, if p = 2). This is sufficient because ([z]) has a p-th root
and if p # 2 each element in 1 + (p?) (resp. if p = 2 each element in 1+ (p?)) has a

p-th root. Write
z = 0([xo] + ply1])

32Let R be a ring, (r,s) some regular sequence such that R is r-adically complete. Passing
to the limit of the injections R/r™ 2+ R/r™ implies that s € R is a non-zero divisor. The snake
lemma implies then that (s,r) is regular because (r, s) is regular.
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with y; € Of. After multiplying a with some Teichmiiller lift we may assume
a = [ag] + p mod p*.
For A € O we obtain
[z0] + plya] + [(Na = [z0 + Aao] + ply} + AP + Si(xo, Aag)]'/? mod p®
with
Sy (X, V) = %((x LY — XP—YP)
(cf. Example and Item @ As F is algebraically closed we find A € F' such that
[z0] + ply1] + [Na = [2] mod p?
with z = zg + Aag. Necessarily, A € Op and z € Oj. This finishes the proof if
p # 2. We leave the case p = 2 as an exercise. O

We can now finish our discussion of D.

Corollary 5.3. D is a complete valuation ring with algebraically closed field of
fractions whose valuation is given by vp: D — R U {oo},d = 0([z]) — v(x).

Proof. By Proposition [5.2] we know that the map
(=) Op - D
is surjective. This multiplicative map extends to a surjective multiplicative map
Or[1/ap] = D[1/7]

This implies that D[1/7] is a field as each non-zero element is invertible. As D is 7-
torsion free, we can conclude that D is a domain and D[1/7] = Frac(D). Moreover,
D is a valuation ring because an integral domain R is a valuation ring if and only if
for all r € Frac(R) \ {0} either r € R or r—! € R. We leave as an exercise to check
that the valuation on D has the desired shapeﬁ We use finally the argument from
[19, Proposition 3.8] to show that Frac(D) is irreducible. Let

P(T)=T%4 by T ' +... 4+ by € D[T]

be irreducible, d > 0P Let Q(T") € Op[T] such that Q(T) = P(T) in D/x[T] =
Or/ag[T], and let y € Or be a zero of Q. Then P(T + y*) has constant term
divisible by 7 and is again irreducible. Consider

Pi(T) = ¢ P(cT + o)
where dvp(c) = vp(P(y*)) > vp(n). Then P;(T) has again coefficients in D[T]
and there exists y; € Op such that
vp(Pi(y})) = vp(m),
ie.,
vp(P(eyt + ) > dvp(c) + vp(r).
Iterating this process yields a zero of P(T). O

We have thus finished the proof of the following theorem.

33Hint: Use that D/7 22 Op /ag.
34By completeness of D this case is sufficient to see that Frac(D) is algebraically closed.
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Theorem 5.4 (cf. [9, Corollaire 2.2.22.]). The map
{C/E algebraically closed, non-archimedean, 1: O% = Op} — |Y|
defined by
(C0) = ker(Amp s Wo, (O%) % 0¢)
is bijective.
Continuing the discussion after Lemma [£.6] Theorem can be seen as giving “a

non-archimedean geometric structure” to |Y|. Namely, we can make the following
definitions.

Definition 5.5. Let y € |Y|. Then we set
e p, C Ajyr the corresponding prime ideal
e ¢, € p, some generator
o Cy = Ain¢/py[1/7] the “residue field of y” (an algebraically closed, non-
archimedean extension of F)
o 8,: Ajy — C, the canonical projection
o v,: Cy - RU{oo} the Valuatiorﬁ

vy(0y([2])) == v(2).
. BJRW the &,-adic completion of Ajn¢[1/7], a complete discrete valuation
ring (cf. Lemma with residue field Cy,.
o For f € A, we set f(y) := 0,(f) € Cy and v(f(y)) = vy(f(y))-

For f € Ay, the map y — f(y) allows us to think about elements of A, as
“functions on |Y'|”. This will be a useful viewpoint in Section

6. LECTURE OF 13.11.2019: NEWTON POLYGONS

We will now introduce the Newton polygons of elements in Aj,s. These will
be a powerful tool. We will however introduce them in greater generality. For
this, let K be a non-archimedean field and v: K — R U {oo} its valuation. Let
f(T) = > a;T" € K[T] be a polynomial.

i=1
Definition 6.1. We define
Ne'U)tpoly<f)

as the largest convex polygon below the set {(4,v(a;)}7,.

The usefulness of the Newton polygon is Proposition [6.2] For us the slopes of
a polygon are the usual slopes of its segments, and not as in [9, Section 1.5.1]
the inverses@ For a polygon with integral breakpoints with call the length of the
projection of a segment to the first coordinate the multiplicity of the slope of that
segment.

Proposition 6.2. Let xg,...,x, € K be the zeros of f, then
—v(x0)y ..., —v(Ty)

are exactly the slopes of Newtyoly (f) with correct multiplicity.

35By Corollary [5.3| this is well-defined.
36We hope that by this convention the confusion within this lecture is reduced (although the
confusion when comparing with our main source [9] is augmented).
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L
T Ty
b+ .
o) =ax+b
K\\\ r ///
x —%a A

FIGURE 2. The Legendre transform and its inverse for p(z) = ax + b.

We will present a proof of this proposition as a consequence of our discussions
of the Legendre transform, cf. Example

Definition 6.3. We set
R:=RU{+c0}
and
F:={p:R— R}

The set F is not an R-vector space, not even an abelian group, in any reasonable
sense.

The Legendre transform and its “inverse” are defined in the following way. For
references on the Legendre transform we recommend [16], [9] and [25].

Definition 6.4. We define the “Legendre transform”
L:F—=F, o~ (A in&{@(z) + Az})
fAS
and the “inverse Legendre transform”

L:F — F, = (= sup{yp(\) — Ax}).
AER

Remark 6.5. We note that
L(g) = —L(—p).

The Legendre transform interchanges z-coordinates and slopes as the following
example shows.

Example 6.6. Assume ¢(z) = az + b for some a,b € R. Then, see Figure
b, if A\=—a

—00, otherwise A # —a

L(p)(A) = {

and
LL(p) = .

To understand the behaviour of the Legendre transform it is useful to define the
concept of a supporting resp. capping line.
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Definition 6.7. Let ¢ € F and z € R. We say that ¢ admits a supporting line at
x of slope A € R if p(z) # +oo and

e(y) > o(x) + Ay — z)

for all y € R. Dually, we say that ¢ admits a capping line at = of slope A if
o(x) # £+ £ 0o and

e(y) < (@) + Ay — )
for all y € R.
If p(x) = 0o (resp. p(x) = —o0), then we call each linear function
c+ My — )
with ¢, A € R a supporting line (resp. a capping line) of ¢ at x of slope \ if
e(y) = c+ My — =)

(resp.
oy) < c+ Ay — 1))

for each y € R. The Legendre transform induces a bijection between (non-extendable)
convex resp. concave functions as we will see in Proposition [6.11}

Definition 6.8. A function ¢: R — R is called convex resp. concave if for all
z,y € Rand all a,b > 0 such that a+b =1

plax + by)) < ap(x) + bp(y)
resp.

plaz +by)) > ap(x) + bp(y).

Thus a function ¢ € F is convex (resp. concave) if and only if it admits a
supporting (resp. capping line) at each = € R.
We need one more definition to exclude some pathological behaviour.

Definition 6.9. We call a convex (resp. concave) function ¢ € F non-extendable
if ¢ is the infimum over all its supporting lines (resp. the supremum over all its
capping lines).

For example, the function

oo, <0

wle) = {0, z>0

is convex and extendable with extension
5(z) = oo, £ <0
v N 0, > 0.
Note that £L(¢) = L(p) is the function

—00, A <0
A
0, A>0.

Definition 6.10. Let ¢ € F. Then the non-extendable convex (resp. non-extendable
concave) hull below (resp. above) of ¢ is defined as the infimum over all its sup-
porting lines (resp. the supremum over all its capping lines).
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We can now summarize the properties of the Legendre transform £ and its
“inverse” L.

Proposition 6.11. Let ¢, € F.

(1) L(¢) is non-extendable concave, and L(yp) is non-extendable convez.
(2) If ¢ <4, then L(p) < L() and L(p) < L(1).

(3) LL(p) < ¢ and o < LL(¢p).

(4) If p # oo admits a supporting line at x of slope X\, then L(p) admits a
capping line at —\ of slope .

(5) LL(p) is the non-extendable conver function below .

(6) E,EN define inverse bijections between mon-extendable convexr resp. mon-
extendable concave functions.

Proof. Point (1) for £ is clear as an infimum of linear functions is non-extendable

concave. This implies the statement for L using the formula L(p) = —£(—¢).
Point (2), (3) follow directly from the definitions.
Let us prove (4). The condition ¢ # oo implies L(p)(u) # oo for all p € R, in
particular for y = —\. By assumption

p(y) = e+ My —2)
for all ¢ < ¢(x) and all y € R. We calculate for u € R:

L(p)(—=A) +z(A+ p)
;Q{R{w(y) = Ay} + (A +p)

inf {o(y) — Ay — z) + zp}
yER

- _

;gR{c +apt =c+ap

v

If p(z) # 400, then we can take ¢ = p(z) and
c+ap > L{p)(1)

as desired. If p(z) = oo (note that p(z) = —oco is excluded by the existence of a
supporting line), then trivially

L(p)(=A) + (A + p) = 00 > L(p)(1)-

In point (5) it is clear by (1), that ££(y) is non-extendable, convex and below
. If £ is any supporting line of ¢, then by Example

0 =LL(I) < LL(p).
This implies the claim.
Point (6) is a formal consequence of the other statements. Namely, (2),(3) imply
that £, £ induce adjoint functors (F, <) — (F, <). But any adjunction induces an
equivalence on fixed points and (1), (5) imply that functions ¢ satisfying LL(p) = ¢

resp. EZ(?/J) = 1) are precisely the non-extendable convex resp. concave functions.
O

Proposition point (4) is particularly useful for working out the shape of
the Legendre transform without to much calculation. The most important example
of the Legendre transform for us is the case of piecewise linear functions (such as
Newton polygons), cf. Figure
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1

1
T
T e —asy A —a A

F1GURE 3. The Legendre transform of a piecewise linear function.
Note how the Legendre transform exchanges slopes and abcisses.
The picture also shows a supporting line at x; of A and a capping
line at —\ of slope 7.

Lemma 6.12. The transform L sends a convex piecewise linear function to a
concave piecewise linear function.

Proof. This follows from point (4) in Proposition O

In the future we will drop the adjective non-extendable and assume implicitly
that all convex resp. concave functions are non-extendable.

Let us come back to a non-archimedean field K with valuation v: K — RU{cc}
and pick a polynomial

F(T) =Y aT" € K[T).

=0
By Definition[6. 1| N ewtpoly (f) is the largest convex function below the set {(i,(a;) }icz
(where a; =0 if ¢ ¢ {0,...,n}). By Proposition this implies

L(Newtpory (f))(r) = inf{v(ai) +ri} =t ve(f).

forreR. If r € Z/(FX), the function v, has the more geometric interpretation
ve(f) =inf{v(f(z)) |z € K,v(z) =1},

cf. [4, 6.1.5.Proposition 5].
The functions v, are, and this is important, not only norms, but valuations, i.e.,
multiplicative norms.

Lemma 6.13. Forr € R and f,g € K[T|
vr(f-g) = v (f) + v (9)-

Proof. After extending K and factoring f, we may assume that f = T — a for some
a € K. We know

vr(Tg) =1+ v:(9), vr(—ag) =v(a)+v.(g).
Let us first assume that r # v(a). Then by the strong triangle inequality
vr((T — a)g) = inf{v,(Tg), vr(—ag)} = vi(T — a) + v (g)
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as desired. The case r = v(a) can be reduced to this. Namely, the functions

r=ve(fg), e v(f) +ve(g)

are continuous in r and they agree on R\ {v(a)}, hence they must agree also for
r=v(a). O

This implies that

L(psg) = L) + L(pg)
where ¢y, is the piecewise linear function connecting the points {(i, v(a;))}iez for
h=> aT" € K[T).
i€l

To analyze how the Newton polygon for a product f - g can be described via

Newtpoly (f) and Newtpory(g) we need the convolution product of functions.

Definition 6.14. Let ¢, € F such that —oco ¢ Im(p) UIm(¢)). The the convolu-
tion of ¢ and 1 is defined to be the function

px: R R a0 inf {p(a) +9(0)}
The Legendre transform behaves well with convolution.

Lemma 6.15. Let ¢, € F such that —oco ¢ Im(p) U Im(z)).
(1) If o,% are convex, then ¢ x 1 is conver.
(2) Llp*) =L(p) + L(1).
Proof. We leave this as an exercise. ([
Item [2 implies that the convolution of two piecewise linear convex functions ¢, ¥

is obtained by concatenating the slopes of ¢, to a new convex function.
Moreover, Lemma has the following important corollary.

Corollary 6.16. For f,g € KT
Newtpory (f - g) = Newtpory (f) * Newtpory (9)-

Proof. Both sides are convex functions and

L(Newtpoly (f) * Newtpory (9)) = LN ewtpory (f)) + LN ewtpoly(9))
= ‘C(@f) + £(‘Pg)
= L‘(‘Pf'g)
= E(Newtpoly(f'))

using Lemma and Lemma [6.13 ([l

Example 6.17. If f =T — «, g =T — 3, then the slopes of Newtpoy(fg) are the
concatenation of the slopes of Newtyoy(f) and Newtyoy(f), cf. Figure 4 This
yields a quick proof of Proposition |6.2

The theory of Newton polygons can be done for power series. Let

€ Ok [T

Then f defines a function on the open rigid-analytic unit disc
Dk = {|l‘| < 1}

3TWe assume that the coefficients of fliein O¢, as opposed to K, in order to avoid convergence
issues on the open rigid-analytic unit disc Dx over K.



LECTURES ON THE FARGUES-FONTAINE CURVE 35

\wa) ~v(8)

FIGURE 4. The convolution of Newtoly (T — o) and Newtpory (T — 53).

and the theory of Newton polygons for f will yield informations on the slopes of
zeros of f in Dg. In particular, even if f is a polynomial we will not be interested
in zeros of f outside of Dk, i.e., in those line segments of Newt(f) of slopes > 0 (as
these correspond to zeros with negative valuations). This explains the condition
that the polygon is non-decreasing in Definition [6.18

Definition 6.18. Let f € Ok[[T]]. Then Newt(f) is defined as the largest, de-
creasing convex function below {(i,v(a;))}iez, i-e.,

ve(f), 7>0
LN ewt(£)(r) = { )
—o00,7 < 0
with
v (f) = Zuel%{y(ai) +ri}
for r > 0.
The condition that L(Newt(f))(r) = —oo for r < 0 ensures precisely that

Newt(f) is decreasing. The functions v, are again valuations (this follows from

Lemma [6.13]).

Again the slopes of the Newton polygon Newt(f) of f € Ok|[T]] captures the
valuation of the zeros of f.
Theorem 6.19 (Lazard [16]). Let f € Ok|[[T]] and X # 0 a slope of Newt(f).
Then there exists some a € K with f(a) =0 and v(a) = —\.

The condition f(a) = 0 is equivalent to the condition that there exists some
g€ Oﬁ[[T]] such that f = (T — a)g.

In the next lecture we will present the proof of Fargues and Fontaine about the

analogue in mixed characteristic, i.e., with Og|[[T]] replaced by Ajys.
The valuations v, (cf. Lemma [6.13)) have obvious analogues for Ajy¢.

Definition 6.20. For r > 0 and f = Y [a;]7" € Ajur we set
i=0
r = i f i ] .
e (f) 5= it {(a:) + i)}
With the v, at hand we can define the Newton polygon for elements in Aj,g.

Definition 6.21. Let f € Aj,¢. The Newton polygon Newt(f) of f is the convex,
decreasing, piecewise linear function with Legendre transform

LNewt(f)) := {Vr(f)7 r>0

—00, <0
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Crucially, the functions v, are again multiplicative.

Lemma 6.22 (cf. [9, Proposition 1.4.9.]). Forr > 0 the function v, is a valuation.
In particular,

Newt(f - g) = Newt(f) * Newt(g)
fO’f‘ fvg € Ainf'

A reduction to an analogue of Lemma like for power series is not possible
as there is no replacement of the ring of polynomials in Ainfﬁ

Proof. We have to show v.(f - g) = v.(f) + vr-(9) for f,g € Ains. The other
statements are then clear. The inequality

vr(f-g) > ve(f) +vr(g)

is easy. Moreover, we leave the case r = 0 as an exercise. Thus assume r > 0.
Write

f = Z[ai]ﬂi, g = Z[bl]ﬂ'l

Then there exist natural numbers n, m > 0 which are the least such that

vr(f) = ve(lan]™™), vi(g) = ve([bm]m™)
(this uses r > 0). Write
f=a +[ap)n™ + 7" g
with v,.(2") > v, (f), ve(7"T12”) > v,.(f) and
g=1y + [bp|7™ + gty
with v.(y') > vi(g), vr(7™F1y") > v,.(g). Then
fg=24[an - by]r"T™ 4 g tmTly

with v,(2) > v (f) + vr(g). We introduce the auxiliary function

7: Apng: RU{o0}, h= ;[q]w — Ogigm{u(ci)} +7(n 4 m).
Then v satisfies, as is easily checked, the properties
(1) 7(0) = o0
(2) v(hy + h2) > inf{(h1),v(h2)} with equality if o(hy) and (he) differ.
(3) v(h) = vy (h).
We can conclude that
(f) = D(Z + [an : bm]ﬂ-n-‘rm)
™) = v, (f) + ve(g)

where we used that v,.(2) > v,.([a, - by )7 T™) in the second to last step. O

Il

A
—

S
3
=2l
3.

n .
38The subset {> [zi]7* € Ajns | n € N} of Ayt is not stable under addition and multiplication.
i=0
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7. LECTURE OF 20.11.2019: THE METRIC SPACE |Y| AND FACTORIZATIONS

We continue with the notations from Section [I1
In this lecture we want to discuss the following theorem of Fargues/Fontaine,
which is analogous to Theorem [6.19

Theorem 7.1 (Fargues-Fontaine, cf. [9, Théoreme 2.4.5.]). Let f € Aiys and let
A # 0 be a slope of Newt(f). Then there exists some a € Op, such that v(a) = —\
and f = (7 —[a])g for some g € Ajns.

For the proof of it is important to interpret A, s as “functions on a punctured
open unit disc”.

Recall the space

Y| = Prim' /A%

of ideals in A, ¢ generated by primitive elements of degree 1, which was introduced in
Definition[4.4] We saw in Theorem [5.4]that |Y| is in bijection the set of isomorphism
classes of algebraically closed non-archimedean extension C'/E equipped with an
isomorphism O = O and we will use the notations introduced in Definition
As an additional “geometric structure” on |Y| we introduce a metric on it, cf. [9
Section 2.3.1.].

Definition 7.2. For y;,y2 € |Y| we set
d(yh y2) =y (9y1 (fyz ))

and

d(y1,0) = v(m(y1))-

We will see that d(y1,y2) is a metric on |Y|. For the moment, it is not even clear
that d is symmetric.

Remark 7.3. Define the adic space

Y := Spa(Ain) \ {7[w]}.
Then one can embed Y] C ) as the set of “classical points”. Rigorously, one has
Aing € O(Y). On Y the Frobenius ¢ acts properly discontinuous (as d(¢(y),0) =
1/q-d(y,0)). The “adic Fargues-Fontaine” curve is defined as the quotient (in adic
spaces)

xoad = /o2

For more informations on this viewpoint we refer to [?, Section 11.2.].

Using the notations introduced in Definition [5.5Theorem has the more geo-
metric reformulation: For f € Ay, and A # 0 a slope of Newt(f), there exists
y € |Y] such that d(y,0) = v(7(y)) = =X and f(y) =0.

Let us first check that d(—, —): |Y] x |[Y| = RU {oo} is a metric. For r > 0 set

o0

4 = {2z = [w;]7" € Ainr | vo(2) = inf{v(z;)} > r}.
=0

Lemma 7.4. Let y1,y2,y3 € |Y|. Then
d(y1,y2) = Slilg{pyl +a, =py, +a,}.

In particular, d(—, —) is an ultrametric, i.e.,
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(1) d(y1,y2) = d(y2, 1)
(2) d(y1,ys) > inf{d(y1,92), d(y2,y3)}
(3) d(y1,y2) = 00 & y1 = yo.

Proof. Let p,, = (&,), ¢ = 1,2, and write

oo

51/1 = Z[xn] ;2

n=0
(this is possible as Op — Oc,, via the map z — [r]mod(&y,)). Then
d(y27 yl) = Vys (092 (Eyl)) = I/(xo).
Applying 0,, yields

0= Z Oy, ([2n])0y, (€42)™
n=0
ie.,
— 0y, ([z0]) = Oy, (€y2) Z Oy, ( 5y2)”_1)~

This implies that
d(y1,y2) = v(xo) = vy, (Oy, ([z0])) = vy, (0, (§y,)) = d(w1,92)
with equality if and only if 21 € OF (as vy, (0, (&y,))). By symmetry this implies

d(y2, y1) = d(y1, y2)-

Moreover,
Pyi T Ou(zg) = Pyo + Bu(ag)-

If r > 0, such that

Py, +ar =Py, +ar,
then

(04, (§42)) € {z € Oc,, | vy, (x) 2 1}
But
{0y, (€y2)) = 0y, ([z0]))-

This implies

d(y1,y2) = v(xo) > 1
as desired. The properties of an ultrametric are then clear, except perhaps that

d(y1,y2) = o0
implies y; = y2. But the ideals p,, , p,, are closed and

Ajpt = lim Aine/ar,
r>0

which implies this. O

For r € (0,00) set
Yol :={y e [Y]|d(y,0) =r}.
The following proposition is important.

Proposition 7.5. For any r € (0,00) the metric space (|Y,|,d) is complete.
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The statement for each single r € (0,00) implies that also for each I C (0, 00)
the metric space
Yil:={y e[Y]]d(y,0) € I}

is complete.

Proof. Let {yn}n>0 be a Cauchy sequence in |Y,|. We claim that for all 7/ > 0 the
sequence of ideals

{pyn + ar}nZO
is constant for n > 0. Indeed, there exists some ng > 0, such that d(y,, ym) > r’
for all n,m > ng. Then by Lemma |7.4
pyn + Qrr = pynl + Ay
Set
Ir’ = pyn + ar’/ar’a
n > 0 as the eventually attained ideal, and
I :=1lim I.,»/ g Ainf.
0
Note
ILo=1+a./a.
The ideal I is generated by a primitive element of degree 1, and p,, — I, n — oo.
To see this, fix r > r and n such that
Py, 0 =1+a..
Write p,,, = (&y,,)- Then there exist an « € a,» such that
a:=¢&, +xecl.

Then a is primitive of degree 1 as 7’ > r = v(7(y,)). Note that (a) € |Y;|. Clearly,
(a) C I. Let us prove that I C (a). The ring

Aing/(a)
is a valuation ring (cf. Theorem [5.4) and thus if (a) # I there exists an r9 > 0,
such that
(a) +ar, C1I.
Let v > sup{rg,r} and m > 0 such that
I+ a.n = Py, + O
Then
ary © 1 C Py, + 0
Applying 6,,, we can conclude the contradiction 79 > r”. Thus, I is generated by
a. Clearly,
Py, =1, n— o0
as
Py, + 0 =1+ ap
for v’ > 0,n > 0. |

Now, we can give a sketch of proof for Theorem [7.I}] More details can be found
in [9 Section 2.4.].
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Theorem[7.1 1) First, one reduces to the case that f € Aj,¢ is primitive of some
degree d > 0. For this, write

f=2 o™ = lim fy

n=0
with
o0
foi= 3 lwa)nm,
n=0

up to multiplying by some Teichmiiller lift, primitive of some degree < d. For some
D > 0, X appears in Newt(fy) for d > D (with multiplicity bounded independent
of d). Set

Xq:=A{y Y]] faly) = 0,v(n(y)) = —A}.
Then one checks that one can construct a Cauchy sequence {yq}ti>0,ys € X4. By
Proposition[7.5] this Cauchy sequence converges to some y € |Y| with v(7(y)) = —A
such that f(y) = 0.

2) Thus, we may assume that f € Aj,¢ is primitive of some degree d > 1. In
this case we may assume that A < 0 is the maximal slope of f (by iterating the
resulting factorization). We claim that there exists a sequence y,, € |Y| such that

o v(f(yn)) = —(d+n)A

L4 d(ynayn+1) > *dTTn)\

o v(7(yn)) = —A.
The existence of such a series finishes the proof as it will converge to the desired
zero. We give the construction of y;. Write

f= Z[xn]ﬂ'"

n=0

Then z4 € Of. Let z € O be a zero of the polynomial

d
>
n=0

with v(z) = —A. Such a zero exists by Example Set y1 = (m — [2]). As X was
of maximal slope,
v(z;) > Ad—1)
for 0 <4 < d. This implies
T2t = w;z?

with w; € Op. Then

F@) = 03,(5) = 0,0 (X [ral”)
- Zd: Oy, ([2:27]) + 7L S0 0, ([z])mr =4t
n=0 i=d+1
where we can write
d . d



?

Thus

i.e.,
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d
But > w; =0, i.e.,
i=0

fly) e 710,

v(f(y1)) = (d+ DA

This finishes the construction of y;. Assume y,, is constructed and write

f = Z[&i}giyn-
=0

Let 2 € F be a zero of

d
E aiTl
=0

of maximal valuation. Then z € Op (check aq € O} using the projection

Aint = Woy (k))

and one checks that y,+1 = (§,, — [2]) works. O

We know that the map

mpr = Y], a— (7 —[a])

is surjective ( but not injective!). In the case E = Q) one give the following better
description of |Y|, cf. [9) Proposition 2.3.10.], which includes a discussion for general

E.

Exercise 7.6. (1) Let C/Q, be an algebraically closed, non-archimedean ex-

tension with an isomorphism O, = Op. Let ¢ = (1,(,...) € O% with
(p € O¢ a non-trivial p-th root of unity. Then

] -1

- 1/p p—1/p] _
Ue =1+ ["P]+... .+ ]f[gl/p]_1

is a distinguished element and wu. € ker(9).

Let a,b € Ajyr be distinguished elements, such that (a) C (b). Show (a) =
(b). In particular, (u.) = ker(6).

For e € 1 + mp \ {1} define u. as in 1). Then wu. is primitive of degree 1
and (u.) = (uer) if and only if there exists an a € Z)S such that

/ a = a i
= = — 1 .
e=e¢ HZ_O (2) (e—1)
Conclude, [Y[=1+mp\ {1}/Z).

Hint: Use that for C/Qy-algebraically closed, non-archimedean the Tate
module T,C* C Obc is free of rank 1 over Z,.
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8. LECTURE OF 27.11.2019: THE RING B

We follow the notation introduced in Section We recall that for » > 0 the
map

(o)
Vp: Aing — RU{o0}, f = ;[m]w = inf{v(€) +ir}
is a valuation, cf. Definition and that the Newton polygon of f is the convex,
decreasing, piecewise linear function with Legendre transform

ve(f), r>0
—o0, 7 <0

9

L(Newt(f)) := {
cf. Definition Clearly, v, Newt(f) can be extend to the ring
11 -
B = Amf[;, H] ={ Z [€,]7" | 2, = 0,5 <0, ig%{u(ml)} > —00}.
n>>—oo
Definition 8.1 (cf. [, Section 1.6.]). Let I C (0,00) be an interval. We set
By
as the completion of B for the family of valuations (v,.),c;.
The intuition is that ” By = O(|Y7])”, where
Y1l :=A{y € [Y] | d(y,0) € I}.

Remark 8.2. e Let R be a topological ring such that 0 has fundamental
system F of neighborhoods which are subgroups. Then
R:= lim R/U
UeF

is the completion of R. By continuity of multiplication Ris again a ring.
e In BY consider

F = {ﬂ V;il([m,oo)) | nym e N,r; € I}.
i=1

According to the previous remark
By = lim B®/U.
UeF

e For any inclusion I C I’ there is a natural injection (cf. [9, Proposition

1.6.15.])

By — B,

which is the identity on BP.

e We can often reduce to the case that I is compact using that

Br = I&H Bjy.
JCI compact

The most important case is I = (0, 00),i.e., of “O(|Y])”.

Definition 8.3. We set
B := B(O,oo)-

We denote by ¢: B — B the extension by continuity of ¢: B® — Bb.
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More generally, for any interval I C (0,00) the morphism ¢: B® — B’ induces
an isomorphism
(%2 B[ = BqI-
With B at hand we can define the “schematic Fargues-Fontaine curve”.

Definition 8.4 (cf. [9, Definition 6.5.1.]). The schematic Fargues-Fontaine curve
is defined as

X := Xp.p := Proj(@ B*")
d>0

Thus, in some sense,

X ="/
Remark 8.5. Recall that we shortly discussed the adic Fargues-Fontaine curve
X =Y/
in Remark [7:3] The isomorphism
7 lp: Oy = 0y
defines by descent a line bundle O(1) on X. More or less by definition,
HO(x,0(1)%%) = B(r '#)"=1 = pe=n",
Thus, in some sense, we are declaring O(1) to be “ample” in Definition

Let us give a simple explanation why completing B to B is necessary.

d FE =
(Bt = 420
0, d#0

Lemma 8.6. We have

Thus, in B® the p-eigenspaces for 7%, d € Z, are too small to define something

reasonable. We will see in Remark that B#="" for d > 0 is huge, more pre-
cisely infinite dimensional over Q,. The argument is typical for the use of Newton
polygons and taken from [9] Proposition 4.1.2.] if d < 0.

Proof. Assume d = 0 and pick

oo

f= Y e (B
i>>—00
Then for all i € Z we get ¢(z;) = x;, i.e., x; € F,. This implies f € E. Now,
assume that d # 0 and 0 # f € B¥="". Then for any r € R
gNewt(f)(x) = Newt(p(f))(z) = Newt(f)(z — d)
and thus for n € N
q"Newt(f)(z) = Newt(¢"(f))(z) = Newt(f)(z — nd).
Assume d > 0. Then we know that
Newt(f)(z —nd) = oo

for n>> 0. But this implies ¢"Newt(f)(z) = oo for all z € R and thus f = 0.
Assume now d < 0 and let z € R. Then there exists zo < 0 with

Newt(f)(zo) > Newt(f)(x).
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As Newt(f) is non-decreasing, for n >> 0 we get
Newt(f)(z) > Newt(f)(xo — nd) = ¢"Newt(f)(zo) > ¢"Newt(f)(z).
But this implies that Newt(f)(x) = oo as desired. O

Under some assumption elements in B can be constructed via two both side
infinite power series.

Lemma 8.7. Let (x,,)nez be a sequence of elements in F' such that

lim v(z,)+nr=o00
|n|—o0

for all r € (0,00). Then
D_laaln"
converges in B.
Proof. Tt is sufficient to show
vp([zgp]n™) = 0, |n| — oo

for all r € (0,00). But v,.([z,]7™) = v(z,) + rn so this is precisely our assumption.

O
Remark 8.8. e Let a € mp. Then
fa — Z[aq_l]’ﬁi
i€Z

converges in B by Lemma Moreover,
—(i—-1);
e(fa) = Z[aq Jmt =7 fa.
i€Z
Thus, we have constructed a map mp — B¥=". We will in fact prove that
mp = Be=7 [
e In general, it is unknown whether elements in B can be written in the form
Z[wn]ﬂ'”, Ty € F,
nez
and, if they can, if the x,,, n € Z, are unique.
To analyze elements in B (or in Bj) we need to extend the theory of Newton

polygons, cf. [9, Section 1.6.3.]. First note that for » € I the valuation v,.: B® —
R U {0} extends to v,: By = RU {oo} by continuity.

Definition 8.9. Assume I C (0,00) is an open interval and f € B;. We define
Newt)(f)
as the decreasing convex function whose Legendre transform is

ve(f), rel
TH{—OO, ré¢l

39V(aq_i) +ir = q 'w(a) +ir — oo, |i| = oo as v(a) > 0.
40And the given map mp — B¥=T is bijective. Strictly speaking, we will not prove this. A
proof can be found in [9, Proposition 4.2.1.].
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and
Newtf(f) - RQ
as the subset of the graph of NMewty(f) with slopes contained in —1.

Remark 8.10. If K C I is compact, f, € B’ converging to f, f # 0, then there
exists and N such that for all n > N, v,.(f,) = v,-(f) for all » € K. This implies that
L(NewtY(f)) is a concave function with integral slopes and thus that Newt{(f) is
a decreasing convex polygon with integral break points.
If f € B, \; the slope of Newt( )(f) on [i,i + 1], then
(1) A <0
1—> 00
(3) lm A; =o0.
i——00
In the case that I is compact, we have to modify the definition of the Newton
polygon.

Definition 8.11. Let I = [a,b] C (0,00) be a compact interval, f € By, f # 0. Set
Newtd(f) as the decreasing convex function whose Legendre transform is

VT(f)a rel
= SV (f)+ (r—a)dgra(f), 17<a
vp(f) + (r —a)avs(f), r=>b

and Newt;(f) C R? as the subset of the graph of Newt)(f) with slopes in —1I.
Remark 8.12. o If f, = f, n — o0, fn, € BY, then
0,0 (f) = lim Dy, (1)

where 0, denotes the left derivative of the function r — v,.(f,). This

definition is independent of the choice of converging sequence f, € BY.

Similarly,0 v, (f) is defined using the right derivative, cf. [0, Lemme 1.6.10].
e For f € B?, \ a slope of Newt(f), the number

Ogv-x(f) = Qav-a(f)

is the multiplicity of A in AMewt(f). This explains why in the compact case,
i.e., in Definition the definition is different than in the open case, i.e.,
in Definition Only Definition yields the correct multiplicities for
the slopes —a, —b.

e It is clear that Newt;(f) is a decreasing convex polygon and all slopes have
finite multiplicities.

e Similarly to Lemma [6.22] one can see

Newt](f - g) = Newt;(f) = Newtj(g)

in both cases, I open or compact.
e For any interval I C (0,00), e.g., half-open, and f € B; one can set

Newt;(f) = U Newt ;(f)

JCI compact

(which agrees with Definition |8.9|in the open case, cf. [9] Section 1.6.3.2.]).
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9. LECTURE OF 11.12.2019: THE GRADED ALGEBRA P

We continue to use the notation from Section [I} Let I C (0,00) be an interval.
Last time we introduced the ring
By
as the completion of B? := Ainf[%, é] for the family (v,),er of valuations, which,
heuristically, can be seen as the “ring of functions on |Y7|” (cf. [8.1).

Definition 9.1 (cf. [, Definition 6.1.1.]). We set
P=@pr=Fnp~"
d>0 d>
Recall that the schematic Fargues-Fontaine curve is defined as
X = Proj(P),

cf. Definition [8.4]
A first aim of this lecture is to analyze the multiplicative structure of P.

Theorem 9.2 (cf. [9, Théoreme 6.2.1.]). The algebra P is graded factorial with
irreducible elements of degree 1, i.e., the multiplicative monoid

U P\ {o})/E>

d>0
is free on Py \ {0}. In particular, if d > 1 and © € Py = B¥=", then there exist
t1,...,tq € PL = B¥=™ such that © =t1 - - t4.

This theorem does not imply that P = Sym@p (Py) is a symmetric algebralﬂ To
prove Theorem [0.2) we will need the following theorem.

Theorem 9.3 (cf. [9, Théoreme 2.5.1.]). Assume I C (0,00) is compact. Then the
ring Br is a principal ideal domain.

As will be clear form the proof, the set of maximal ideals in Bj is in bijection
with |Y[|

Lemma 9.4. Let A be an integral domain. Then A is a principal ideal domain if
and only if A is factorial and each (non-invertible) irreducible element generates a
maximal ideal.

Proof. The “only if” part is clear. For the converse, let I C A be a non-zero ideal
and let a € I be non-zero. As A is factorial we can write

a = alil e a;n
with the a; pairwise prime irreducible elements. Then
n .
~ 15
Afa = H Alaf
j=1
and because the ideals (a;) are maximal we see that I/a is generated by the residue

class of some divisor of a. This implies that as desired I is principal. ([l

411f p o~ Sym®(P1), then Proj(P) would have points with residue field Qp, which will turn out
not to be true.
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Lemma 9.5. Let y € |Y;|. Then the morphism 60,,: B® — C,, extends to
Gy: B[ — Cy.
Moreover, ker(0,: By — Cy) = &, By is principal, generated by &,.

Proof. Set r = d(y,0). It suffices to see that 6, is continuous for the topology on
B induced by v,. Let

o0

x = Z [x;]7" € B.

i>—00
Then

0,0) = 3 0, € BY
>>—00
and thus
vy (0y(x)) > infiez{v(z;) + ivy(m)} = infiez{v(z;) + ir} = v, (x)

as vy (m) = r. This proves that 6, extends as desired to By.
It follows from the description of the completion as an inverse limit, that

ker(6,: B — Cy)
is the closure of fbe in By. Let f € By be in this closure and write

n—oo

with f,, = gn&y € fbe. Let r € I. Then

Vr(gm - gn) = Vr(fm - fn) - Vr(gy)

with v,.(§) # oo. Thus, the sequence (g,), is again Cauchy which finishes the
proof. O

The following lemma is [9, Proposition 1.6.25.].
Lemma 9.6. Let f € By be non-zero with Newt;(f) =0, then f € Bf.
Thus, if f € By with Newtr(f) =0, then f =0 or f is invertible.

Proof. As By = @ B and
JCI compact

Newt;(f)= |  Newt,(f)

JCI compact

it suffices to treat the case that I = [a,b] is compact. If f, — f, n — oo with
fn € BY, then Newt;(f,) = 0 for n >> 0, which reduces us the the case that f € BP.
Here one implicitly used that f # 0 to assure that the sequences f, ! for n > 0 is

Cauchy. Write
f= Z [xn}ﬂn = Z [In]ﬂ'n + Z [zn]ﬂ'n

n>—oo n>N n<N
such that each slope of Newt(f) on (—oo, N) is strictly less than —b and each slope
of Newt(f) on (N, 00) is strictly greater than —a (this is possible as Newt;(f) = 0).

Set
z = Z [xn)7", y = Z [xp]7™.

n>N n<N
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Let A1 be the slope of Newt(f) on [N — 1, N| (we allow \; = 0o) and Ay the slope
of Newt(f) on [N,N +1]. Then —\; > b and —\3 < a. Moreover,

v(xzy) > (n—N)\ +v(zn)
for n < N and

v(xy) > (n—N)\a +v(zn)
for n > N. Write

y=[nrV1+ Y [waaylem ).
—ocoKn<N

7= Z e L

—ocokKn<N

We claim that

is topologically nilpotent in B;. Let r € I. Then
ve(§) = infpen{v(zn) —v(an)+r(n—N)} = infpcn {(Ai+7)(n—=N} = =X —r >0

as r < b < —A;. Thus,
y = [zn]mV (1 +9) € Bf.

To finish the proof it suffices to show that y—!

F=yl+y 2.
For this it is sufficient (because v,.(y) = v,.([xn]7™) for r € I) to show that
M)

z is topologically nilpotent in By as

vp(2) > vp([xn]m
for r € I. But
vp(2) = infps N{v(zn) + 0} > infron{(n — N)A2 +v(zn) + 71}
=inf,sy{n(A2 +7) = NXa+v(zn)} =X + 7+ Nr+v(zy) > ve([zy]mY)
because Ao + 1 > 0. O

Now we can proof the following theorem.

Theorem 9.7 (cf. [9, Théoreme 2.4.10.]). Let I C (0,00) be an intervall and let
f € Br. If X is a slope of Newt(f), then there exists a € mp with v(a) = —\ and
f=(m—|a))g for some g € By.
Proof. By Lemma [9.5] it suffices to prove that there exists an element y € |Y| with
d(y,0) = —\ such that

f(y) = 0y(f)

is zero. This is again an approximation argument using Proposition [
Now, the proof of Theorem [0.3] can be finished.

Proof. (of We apply Lemmato By. Let f € Br. As I is compact, Newt;(f)
has only finitely many slopes. If NMewt;(f) = 0, then f = 0 or f € B by
Lemma If X is a slope of Newt;(f) we can factor f = &,g with y € |Y_,| and
g € B;. The slopes of Newty(g) are the slopes of Newt(f) with multiplicity of A
one less. Iterating implies that we can write

f=uby &y,

for some unit u € B} and some y1,...,y, € |Y;|. This finishes the proof as all the
&, for y € |Y7| generate maximal ideals on By by Lemma a
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Lemma 9.8. Let y € |Y;|, then the &,-adic completion of By is BQ‘RW.

Proof. As BiR’y is the ¢,-adic completion of B® and (¢,)B; the kernel of
Gy: By — Cy,
we obtain a canonical morphism
+
BdR,y — (B])é\y.
As both rings are complete discrete valuation rings, &, (B I)é\y is the maximal ideal of

(B I)E’y and this morphism is an isomorphism on residue fields, the claim follows. [

This allows us to associate to any By a divisor on |Y7| as done in [0, Section
2.7.1].

Definition 9.9. Let I C (0,00) be any interval. We define Div'(|Y7]) as the
monoid of formal sums
Z NnyY, Ny €N

yE|YT]|
such that for each compact J C I the set {y € |Y;| | n, # 0} is finite.

Thus,
Div* (|;]) = N[|Yz]]
if I is compact and

Divt(Vil)=  lim  Divh(¥s)
JCI compact

in general.

Definition 9.10. Let I C (0,00) be any interval and f € By \ {0}. Then
div(f) = Y ordy(f)y
yElYI|

where ord, (f) is the valuation of the image of f in the valuation ring Bé*R’ y

Note that this is well-defined by The monoid Div' (|Y7|) is naturally partially

ordered by
Z nyy = Z myy
ye|Yr| yE[YT|

if ny > m,, for all y € |Y7]|.
Proposition 9.11. The map
div: By \ {0}/B) — Div'(|Y7])
1s injective, and bijective if I is compact. Moreover,
div(f) > div(g)
if and only if f € gBy.

The morphism div need not be surjective if I is not compact, the problem are
divisors with infinite support for » — 0.

Proof. The case that I is compact is clear by The general case follows as
By = Lin Bj. O

JCI compact
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Recall that

P::@Pd

d>0
with Py := B#=""_cf.
Lemma 9.12. We have
B*="" d>0
=" ={ E, d=0
0, d<0

As presented in Remark [8:§] the space B¥=" is big.
Proof. Using that
Ains = {f € B | Newt(g,00)(f) SR}
the arguments for d < 0 are exactly the same as in the case of B?, cf. Lemma O

Note that ¢ acts on
Divt(|Y])
By ¢*(y) :== (97" (&))-
Definition 9.13. Set
Div*(|Y]/¢?) := Divt (Y ])#".
As ¢ induces a bijection
o: Vi = Y|

for any interval I C (0,00), we see that restriction of divisors induces an isomor-
phism
Div*(|Y]/¢") = Div*(|Y7))
for any interval of the form I = [a, ga).
Theorem is implied by the following more precise statement.

Theorem 9.14 (cf. [9, Théoreme 6.2.7.]). The morphism
div: | J(Pa\{0})/E* — Divt(]Y|/¢%)
d>0
s an isomorphism of monoids.
Forx € Py, d >0
©*(div(z)) = div(p(z)) = div(rz) = div(z),
thus the morphism div in Definition [0.13] is well-defined.

Proof. Let x € Py,y € Py such that div(z) = div(y). Without loss of generality
we may assume

d >d.
Then by Proposition [0.17]

for some unit u € B*. Moreover,
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ie.,

c Bw:ﬂd—d’ 0, if d 75 d
u =
E, ifd=d

(cf. Lemma [9.12)). Thus, d = d’ and z,y are equivalent modulo the action of E*.
Thus we are left with proving surjectivity of div. Let y € |Y| and write §, = 7 — [a]
for some a € mp. It suffices to show that the divisor

> ")
nez

lies in the image of |J (Py\ {0})/E*. Set
a>0

n

= L0~ = [ 218

n>0 n>0

Then z converges in BIH and satisfies

div(z) = > @ "(y).

n>0
By Lemma [9.15] there exists a non-zero element
zeB
such that ¢(z) = £z. Then t := zy satisfies
(t) = p(a)p(z) = 1€ a€z = 7t

and

div(t) = > ¢*(y)

n>0
as desired. O

The element z in the proof is a substitute for the non-existent element
O
™
n<0
Lemma 9.15. Let b€ B* N Wp, (F)* be any element. Then the E-vector space
B .= {z € B* | p(z) = bz}

s one-dimensional.

The assumption that b € We, (F)* is essential. For b = 7 the space

(BY)e=

is 0.

4271 infinite product [] @, of elements =, € B converges if and only if z, — 1, n — oo.
neN

Now use that a?" — 0 for n — oo.
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Proof. As
Wo, (F)[1/x]*~' = E

one can conclude that (B?)¥=" is at most one-dimensional. By assumption we can

write
b= Z [an]m"™

n>0

with a, € F such that ap # 0 and inf{v(a,) | n > 0} bounded below. If a € F,
then multiplication by [a] induces an isomorphism

BP=b o pe=a"'b,
Thus, after multiplying b by some Teichmiiller lift we can assume that b € Ajur \
mAins. We will define by induction a converging sequence x,, € Ainr, €1 & TAjnf,
such that

o(zy) = bx,, mod 7"

and x, = xp41 mod 7" for any n > 1. For n = 1 it suffices take the Teichmiiller
lift of a non-zero solution, necessarily in Op, of the equation

o(X)=X9=bX mod 7

Note that a non-zero solution exists as F' is algebraically closed. Assume x, is
constructed and write
o(xn) = bz, + 71"[z] mod 7"
for some z € Op. We need to find u € O solving the equation
o(xn + 7" [u]) = b(x, + 7" [u]) mod 7",
Expanding yields the equivalent equation
apt — z —u? = 0 mod .
As F is algebraically closed we can solve this equation in Op. This finishes the
proof. O
Assume that F = Q,,. In this case one can choose
&=1+ [gl/p] T+ [5p_1/p] = 9018(][5_]1 1)

and see that
we=1[e] -1
satisfies
o(2) = p(&y)z.

10. LECTURE OF 18.12.2019: THE CURVE

The aim of this lecture is to prove that the schematic Fargues-Fontaine curve

X = Proj(P)
with .,
- @
d>0

is actually a “curve” or more precisely a Dedekind scheme. In some aspects the
“curve” behaves like PL, as we will explain.
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We start by proving the fundamental exact sequence of p-adic Hodge theory.
Recall that in the proof of Theorem we constructed for every y € |Y]| an
element t € B¥=", unique up to multiplication by an element in E*, such that

div(t) = > (¢™)"(y) € DivF(|Y]/9").

nez
Let us denote II(§,) :=t.

Theorem 10.1 (cf. [9, Théoreme 6.4.1.]). Let y € |Y| and set t :=1I(§,) € B¥=".
Then for d > 0 the natural sequence

0 Bt? — B¥=" — Bf, [€IBL, —0
15 exact.
Proof. If x € Be=m" maps to 0 in B(TRW/{gBJR’y, then
div(z) > d -y,
which implies that
div(z) > d - div(t)
because div(z) is g-invariant. By Theorem this implies that
z € FEtd,

By induction, the surjectivity of Be="" Bix y/gng'Ry can be reduced to the
case that d = 1. Then it suffices to see that the map

Oy: B~ = C,y
is surjective. For simplicity, we only deal with the case E = Q,. But then we can
apply the more precise Lemma [10.2 O

Lemma 10.2. Assume E =Q, and y € |Y|. Then

l—=e®% — s 14mp—>Cy——>1

Yy
:i 2J(10g([])
)

0 Qpt Be=r — > (C, 1

is a commutative diagram with exact rows, where
e:=[1,(p, (2, .. ] € Oy, = Op
is a compatible system of primitive p™-roots of unity and t = log([e]) = II(&y,).
If £/Q, is arbitrary, one can use Lubin-Tate theory to construct an isomorphism
mp & B¥TT,

cf. [9, Proposition 4.4.5.].

Proof. The
log([=]): 14mp = B, @~ log([z]) = Y (=1)"}([z] = 1)"/n

map is well-defined by general properties of the logarithm. The image lies in B¥=?
as

p(log([z])) = log([z"]) = plog([z]).
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The composition

n log([-])

_, 0
1+m B¥=P % C,

factors as

(-)* log
1+mp —— 1—|—mcy — C.

Both of these morphisms are surjective. The first because C), is algebraically closed
and the second because the image of log: 1 +mg, — C, is p-divisible (as Cy is
algebraically closed) and open (because the exponential is a local inverse to log).
From the proof of injectivity in Theorem we have now established that the
bottom row is exact. Thus it suffices to see exactness of the first row. But the first
row is the inverse limit of the exact sequence

1= e (Cy) = 14 me, =5y — 1
along the transition maps which are rising to the p-th power resp. multiply by p.
This finishes the proof. [

We can draw the following consequence.
Corollary 10.3. In the notation of Lemma[I0.2 there is a canonical isomorphism
P/tP=S:={feC,T]| f(0) € E}.
of graded E-algebras. In particular, Proj(P/tP) = (0).

Proof. Let 6,: B — C, be the canonical quotient associated to y. Then we claim
that the morphism

a: P/tP — S, Zxd — Zﬂy(xd)Td
d>0 d>0

is an isomorphism of graded E-algebras. It is trivially an isomorphism in degree 0
and in degrees > 1 by Theorem Indeed, surjectivity is clear as each element
in Cy has arbitrary roots. To prove injectivity let « € Py, d > 1, with 6,(¢) = 0.
Then x =t -t mod f;de*Rw for some t' € B*="""" by Theorem This implies,
again by Theorem that © —t -t/ € E -t as desired. Let us prove that
Proj(P/tP) = {(0)}. For this pick a graded prime ideal p C S. If ¢T'¢ € p for some
d > 1 and ¢ € Cf multiplying with ¢~ T yields T9*! € p, and then p = (T), i.e., p
does not appear in Proj(5). O

As X = Proj(P) is defined as the Proj of an E-algebra which is generated by its
elements in degree 1, X comes equipped with canonical line bundles

Ox(n),
which are associated to the graded P-module P[n] where P[n]q := Pytn, d € Z.
Lemma 10.4. For eachn € Z
H(X,0x(n)) = B¥="".
Proof. By construction, there is a natural map
B#=™" - H(X,0x(n)),

which is injective as P is an integral domain. Using that P is graded factorial (cf.
Theorem [9.14) one obtains that it is surjective. O
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Definition 10.5. Let t € P, = B¥=" = H%(X,Ox(1)) non-zero. Then let
oo € X
be the unique closed point in the vanishing locus of ¢.
Now we can prove one main result of this course.

Theorem 10.6 (Fargues-Fontaine, cf. [9, Théoréme 6.5.2.(7)] resp. [9, Théoreme
5.2.7.]). Lett € P, = B¥=™ be non-zero. Then

B; := P[1/t]y = B[1/t]¥=*
is a principal ideal domain, and
Proj(P) = Spec(B;) U {oo; }.
In particular, X is noetherian and regular of Krull dimension 1.

Classically, in the case E = Q, the ring B, for ¢ = log[e] is called B..

Proof. We apply Lemma[9.4] If z € B; is non-zero, then for some d > 0

with ¢/ € B¥="", Applying Theorem we can factor ¢ into elements t,...,tq €
BT e,
_ tq

By Theorem and Corollary each t; /t is either a unit or generates a maximal
ideal in B;. This finishes the proof that B; is a principal ideal domain. To see that X
is noetherian and regular of Krull dimension 1, pick two non-colinear ¢,t’ € B¥=7.
Then

X = Spec(B;) U Spec(By/),

which finishes the proof. O

Let | X| denote the set of closed points of X@
Lemma 10.7. There are canonical bijections

X[ =[Y]/¢® = (P \ {0})/E*.
Moreover, for y € |Y| with image © € |X| there is a canonical isomorphism
O% ., = Bj{R’y.
The bijection
|X] = (P \{0})/E

exists similarly for X = PL.

43This notation can potentially be misleading as it commonly also denotes the underlying
topological space of X. However, we already chose the similar notation |Y|.
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Proof. The bijection

|X| = (P \{0})/E*
is clear by Theorem [10.6] and Theorem The bijection

Y|/¢" = (P \ {0})/E*
follows directly from Theorem Let y € |Y| with image = € |X|. Then
{z} =V"(1)
with ¢ = II(¢,). Pick some t' € B¥=" such that ¢’ ¢ Et. Then the canonical
morphism B — Bd+R,y = Bé\y (cf. Lemma yields a homomorphism
=1 A
BII/t']*=" — B, .

Moreover, t/t' is send to a uniformizer in By , as t generates ker(6,: B — Cy). As
the residue fields of (B[1/t’ ]9":1)?/,5/ and B;R_y agree and both are discrete valuation
rings, one can conclude that they are isomorphic. O

Thus, the following definition is sensible.
Definition 10.8. For x € | X| we define the complete discrete valuation ring
+ — ON
Bir. = OX.u
and its field of fractions Byg,z-

If D= > nyz € Div(X) is a divisor, then
xeXo

deg(D) = Y n, € L.
z€|X|
Let k(X) be the function field of the Fargues-Fontaine curve. Then we can define
div(f) == > ordy(f)z,
z€|X|
where ord,: Ox , — Z U {oc} is the valuation on the DVR Ox .
Proposition 10.9. Let f € k(X)*. Then

deg(div(f)) =0
and the resulting morphism

deg: Pic(X) — Z
is an isomorphism (with inverse n — Ox(n)).

The statement that deg(div(f)) = 0 in the proposition can be interpreted as the
heuristic that “X is proper”.

Proof. The first assertion follows from Theorem [10.6] and Theorem [9.14] as these
imply that one can reduce to the case f =t'/t with t',t € B#=™. Then
le(f) = OO0 — OOt
has degree 0. The second assertion follows from Theorem [10.6| as there is an exact
sequence
0—>Z-[0Ox(1)] = Pic(X) — Pic(Spec(B;) — 0
and Pic(Spec(By)) = 0. O
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The fundamental exact sequence in Theorem [I0.1] can be interpreted as the
statement that the sequence

0> Ox 5 Ox(1) = k(ooy) — 0

obtained by the choice of some non-zero section t € H°(X, Ox(n)) remains exact
after taking global sections.
More generally, we can calculate the higher cohomology of the line bundles

Ox(n)
Proposition 10.10. The cohomology of Ox(n) is

n

Be= ifi=0
H'(X,0x(n)) =10, if 1> 2,0ri = landn > 0
Big./FiIT"Bi .+ E#0, ifn<-—1
Here x € | X| is any point.

Note that the situation is a bit similar to the case that X = PL with the
important exception that H'(X,Ox(—1)) 2 k(co)/E # 0.

Proof. The case i = 0 was already proven in Lemma [10.4] The vanishing of the
cohomology in degrees i > 2 follows from the fact that X can be covered by two
affine open subschemes. Using the long exact sequences in cohomology associated
to the short exact sequences

0 Ox(n—1) 5 Ox(n) = k(coy) > 0

for some t € B¥=7\ {0} reduces the statement to the assertions that H(X,Ox) =0
and H'(X,Ox(—1)) # 0. Let us show that

HY(X,0x)=0.

Pick some non-zero t € B¥=" and let j: Spec(B;) — X be the associated open
immersion. Then there is an exact sequence

0— OX — j*(OSpec(Bt)) — OXpot[l/t]/OXpot — 0.

Theorem implies, by passing to the colimidfl7 that the sequence stays exact
after taking global sections. The morphism j is affine and hence

H1 (X7j* (OSpcc(Bt)) = Hl(SpeC(Bt)a OSpcc(Bt) =0

which implies as desired H!(X,Ox) = 0.

As H°(X,Ox) = E we moreover obtain from the exact sequence

0 Ox(—1) 5 Ox — k(cor) = 0
an isomorphism
H(X,0x(~1)) = k(oc,)/E # 0

as desired. O

4note that j.(Ox) 2 lim Ox (doot)

—
d
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By the vanishing of H!(X,Ox) taking cohomology of the short exact sequence
d
0— Ox — Ox(d) = Biy ., /Fil'Bj o, = 0
recovers the fundamental exact sequence Theorem [I0.1] Thus we see that Theo-
rem is (basically) equivalent to the statement that H'(X,Ox) = 0.
We will close this lecture with relating the curve to the crystalline period ring

Bys = Aerys[1/p]

crys
which was introduced in Definition The following material is taken from [9]
Section 1.10.]
Definition 10.11. We define the following rings.
(1) Set
B = Aue[1/p).
(2) Let I C (0,00) be an interval. Then define B} as the completion of B+
with respect to the family of norms (VT)TGIH
(3) If I ={r}, set B := B{t}.
(4) Set
+._ pt
BT = B(O,oo)'
The elements in B* can be interpreted as functions on |Y'| which “extend to the
crystalline point Wo , (mp)”.
The norms v, for r € (0,00) on BT enjoy the additional property that

vpr(x) > T?/Vr(x)

for r’ < ’/‘E This implies that

B C BY,
and thus that the Frobenius ¢: B® — B?, which extends by continuity to an iso-
morphism ¢: BF = B yields a (non-invertible) endomorphism

qr>
¢: Bf =2 Bf C Bf.
for each r € (0, 00).
Lemma 10.12. Let r € (0,00). Then there is an isomorphism
Bt = {z € By, | Newt(g(z) > 0}
of topological E-vector spaces, and similarly
Bt = {z € B | Newt( «)(z) > 0}.
The condition Newt(o,(x) is to be interpreted as Newt(g,)(z) € R>o x R.
Proof. Cf. [0, Proposition 1.10.7.]. O
Lemma 10.13. Let a € mp \ {0} and set r :=v(a). Then

<Ainf[%nml/p1

45Equivalently, B I is the closure of B>+ in By.
oo

4BIndeed, let = = > [zp]n™ € BBt Then %’Vr(l‘) = inf,cz{v(zn) + ir} > v,u(x) as each
n>>>—oo
v(zn) > 0and v’ /r < 1.

B+

1%
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Proof. By general properties of completions for norms
+ ~ A
Br = Up [1/p]
where U := {z € B>T | v.(x) > 0} is the “unit ball”. But
a
U = Al
p

as can easily be checked.

59

O

We assume now that £ = Q, and fix a non-archimedean, algebraically closed

extension C/Q,. Let
ve: C — RU{oo}

be the non-archimedean valuation on C' and assume F := C°. Moreover, fix an

element
(p,pl/p,...) €O,
Recall (cf. Definition [4.11]) that
Acrys
is the p-adic completion of the subring
bin
1

P11 > 0] € Auuel2)

p

Ainf[

n!
Lemma 10.14. There are natural inclusions
Bf C B .C B,

pr = “crys =

where r = va(p) = v(p®). Moreover,

BT = (] ¢"(Biy)

crys

5

1=1

is the largest subring of BL . such that ¢ is bijective.

crys

Proof. There are natural inclusions

b1p b1n b
At L) € e ZL 1 > 0 € e 2.
p n: p
Passing to p-adic completions yields the inclusionﬂ
B} € B, CBf

(cf. Lemma [10.13). For the second statement it suffices to see that
BT = () ¢"(B})
i=1
for any r € (0,00). If n > 0, then the image of
©": Bf — B
is B, by construction of the Frobenius on B. As

Bt = lim B}
ek

this implies the claim.

471l of these rings embed compatibly into B(J{R, cf. Lemma for Bé;ys.
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Proposition 10.15 (cf. [9, Proposition 4.1.3.]). There is a canonical isomorphism

of graded algebras
—nd _d
P @ = @,
d>0 d>0

Proof. Clearly,

(Biya) P~ = (BF)P"
for each d > 0 as B* is the largest subring on Bf such that ¢ is bijective.
Now the claim follows from Lemma [10.12| as for each x € B#=r" for some d > 0 the
Newton polygon Newt(x) must lie in RS, Alternatively, one can use Theorem

Lemma and that for x € 1 + mp the element log([z]) lies in B™. O

Let y € |Y| be the point determined by C, that is (£,) = ker(6: B® — C), and
fix a compatible system

e = (1,6, Cp2, - .) € O
of primitive p”-roots of unity. Set

t == log([z]) € (Biy)?™",

Ccrys
Berys := Bly[1/1]
and
B. := Bf!

crys *
Then
X ="Spec(B.) U Spec(Big)”
glued “along Spec(Bgr)”. Thus we see how the Fargues-Fontaine curve geometrizes
the various period rings in p-adic Hodge theory which were introduced by Fontaine.

11. LECTURE OF 08.01.2020: THE VECTOR BUNDLES Ox (\)

For the classification of vector bundles on the Fargues-Fontaine curve the Harder-
Narasimhan formalism is an indispensable tool. We will introduce it greater gener-
ality (cf. [9, Section 5.5.]). For this let C be an exact category@ with two functions

deg: Ob(C) — Z,
rk: Ob(C) — N,
both additive in short exact sequences. Moreover, we assume that there exists an
abelian category A and an exact faithful functor, the “generic fiber”
F:C— A
such that F' induces for every £ € C a bijection
{strict subobjects of £} = {subobjects of F(£)},

where a strict subobject is one which can be prolonged into a short exact sequence.
Finally, we assume that the rank function rk: C — N is the restriction of an additive
function rk: A4 — N which satisfies

k() =0& £ 20,

and, most importantly, that the following condition is satisfied: If u: & — &’ is
a morphism in C such that F(u) is an isomorphism, then deg(€) < deg(€’) with

48roughly, an additive category with a notion of short exact sequences
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equality if and only if w is an isomorphism. For example, one can take the category
of vector bundles

C := Bung
for C' a connected, smooth, proper curve over a field k, with A := Coh(C) its
category of coherent sheaves,
deg(€) := deg(A"E)

for £ a vector bundle on C' and rk: A — N the generic rank of a coherent sheaf.
Most importantly for us, using Proposition for the degree function, we can
take exactly the same definition with C replaced by the Fargues-Fontaine curve
X = Xyr = Xp r (associated to E, F).

Definition 11.1. In the general situation from above, we define the slope of £ € C

as
. deg(&)
and we call £ semistable if p(F) < u(€) for all non-zero strict subobjects F C £
u(F) < ().

The following lemma is a useful consequence of semistability.

Lemma 11.2. Let £, € C. Assume E,E" are semistable of slopes A, N'. If A > N,
then

Homc(g, 5/) =0.
For the cases we are interested in we leave the proof of Lemma([IT.2]as an exercise.

Proposition 11.3. With the above notations from above, each € € C has a unique,
functorial filtration, the Harder-Narasimhan filtration,

0=&cé& c---cé&E. =€

such that £;/&;—1 is semistable for each 1 < ¢ < r and the sequence of slopes
w(&;i/Ei—1) is strictly decreasing.

The Harder-Narasimhan polygon is the unique concave polygon in R? with origin
(0,0) and slopes u(&;/€;—1) with respective multiplicity rk(&;/&€;—1).

Proof. The statement can be proven using induction on rk(£). If F(€) is simple
in A, then necessarily £ is semistable and its own Harder-Narasimhan filtration.
Thus assume that £ has a strict subobject

0=+F—=&—=2G—-0

with rk(F),rk(G) < rk(€). By induction F,G admit Harder-Narasimhan filtra-
tions. This implies, using Lemma that the slopes of strict subobjects of £ are
bounded. Then take the strict subobject 7' C £ of maximal slope and maximal
rank. We claim that each non-zero strict subobject G’ of £/F’ has slope < u(F").
Indeed, if 4(G’) > u(F’), then the preimage & of G’ in & must have slope > p(F")
and rank > rk(F’), which by construction of 7' implies £ = F’. Thus, we can set

81 = .7:,
and continue with £/&;. Uniqueness and naturality follow from Lemma O
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Proposition 11.4. Let A € QU {oo}, then the subcategory
C;St

of semistable objects of C of slope X (or o), is abelian and of finite length, i.e.,
each object has a finite filtration by simple objects.

Proof. Exercise. 0

For example, if C = Bunpi for some field k, then each £ € C is isomorphic to
Do
dez,

for some ng € N (only finitely many non-zero) and & is semistable if and only if
ng = 0 except for at most one d € Z. The Harder-Narasimhan filtration of & is,
with repetitions, the one by the subbundles.

& =o()m
d>i
We will now introduce the second example, next to Buny for X the Fargues-
Fontaine curve, which will be most relevant to us.
Definition 11.5. We define
E:=Wo,(F,)[1/7]
with ﬁq the algebraic closure of Iy in F'.

Definition 11.6. Let A be a ring with an endomorphism ¢: A — A. A ¢-module
over A is a finite projective A-module M together with an isomorphism

opm: "M = M.
We denote by ¢ — Mod 4 the category of p-modules over A.

If M is free, then by choosing a basis €1, ...,e, of M we can write
n
(,DM(ei ® 1) = Zaijej
j=1

for some uniquely determined matrix (a;;) € GL,(A). Changing the basis ey, ..., e,
according to some g € GL,,(A) changes the matrix a := (a; ;) to the p-conjugated
matrix gap(g)~!. Thus, isomorphism classes of free p-modules of rank n are in
bijection of p-conjugacy classes of matrices in GL,,(A).

We will now assume A = E with ¢ the natural “Frobenius” on E. In this case
the category

@ — Mod,

of p-modules over is abelian and fits in our previous formalism. Indeed, the
valuation on F induces an isomorphism

deg: {¢ — modules of rank 1} /isom & coker(E* M)) = 7.

Now set
C:=A:=p—Modyg,
tk(M) := dimz M

491t E is unramified over Qp, these are usually called isocrystals over Fy.
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and
deg(M) := deg(A™M) pr).

In particular, the Harder-Narasimhan filtration is available for the category ¢ —
Mod EH Note, that in this example we could also consider C = ¢ — Mod; with
degree function —deg (as C is already abelian and the generic fiber functor is the
identity). This implies that the Harder-Narasimhan filtration is canonically split
and each morphism between semistable objects of different slopes is zero, once we
see that an object is semistable with respect to —deg if it is semistable with respect
to deg.

For example, for A\ € Q with A\ = d/r with d € Z,r > 0 coprime we define
(D(A), ©p(x)) as the p-module D(X) := E" with associated matrix

0o ... 0 x
1 0o ... 0
o ... 1 0

The category ¢ — Modj; can be described completely.

Theorem 11.7 (“Dieudonné-Manin classification”). The category ¢ — Modj, is
semisimple with simple objects given, up to isomorphism, by the D(\) for A € Q.
For A € Q the division algebra End,_wmoa, (D(X)) over E is central of invariant
—[A\] € Br(F) 2 Q/Z.

Proof. We first classify the semistable objects. Passing to unramified coverings of
E, twisting by one-dimensional isocrystals the essential point is to see that each
semistable p-modules over E of slope 0 is a direct sum of the trivial isocrystal
D(0) = (E, ). By direct inspection, one can see that

Exty,_noa,, (D(0), D(0) = E/(p — 1d)(E)
and we will prove that this group is zero. We claim that even the sequence
0 0p =0y 2% 0, — 0

is exact. The crucial point is surjectivity which, however, can be checked (by com-
pleteness) modulo 7, where it follows from the fact that Fq = O /7 is algebraically
closed. Thus, in order to finish the proof it suffices, using induction and semistabil-
ity, to see that each semistable p-module D of slope 0 admits a non-zero morphism
D(0) — D. For this, write (after the choice of some basis)

YD = ay
for some matrix a € GLH(E). After row operations the matrix a is triangular
with all diagonal entries a;; € Og, because D is semistable of slope 0. As I, is
algebraically closed, we can write
a1,1 = p(z)/x
for some = € (’)g. This implies that if e denotes the first basis vector of the

(implicitly chosen basis) the @-submodule (E,a;1¢) of D is isomorphic to D(0).
Having classified the semistable isocrystals as claimed the semisimplicity of ¢ —
ModZFE follows by considering the HN-formalism for —deg, which implies that the

50For classical reasons, semistable isocrystals are called isoclinic.
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HN-filtration is canonically split (as by inspection the semistable objects remain
semistable for the “opposite” HN-formalism). This finishes the proof. ([

More generally, one can prove the following, sometimes useful, statement.
Lemma 11.8. Let R be a perfect ring. Then the functor
{Z,, — local systems on Spec(R)} — {¢ —modules over W(R)},

which is defined by
L — I'(Spec(R),L ®z, Wg)¥="

is an equivalence of categories.

Here by a Z,-local system we mean a pro-étale sheaf over Spec(R), which is
locally equivalent to a finite direct sum of the sheaf Z, = Homeont (mo(—), Zp),
where 7, is given the p-adic topology. By Wg we denote the pro-étale sheaf of
Witt vectors over Spec(R).

Proof. We leave this as an elaborate exercise. O

Now, we will connect p-modules over E to vector bundles on the Fargues-
Fontaine curve. More details for the following discussion can be found in [9, Section
8.2.].

We note that £ C B.

Definition 11.9 (cf. [9, Section 8.2.3.]). We define the functor

E(=): ¢ —Mody — Bunx, (D,¢p) — @(B ® 5 D)P@po=n
d>0

For example, for d € Z the p-module D(—d), i.e., opu) = 7% is send to
Ox(d).

We note that at this moment, it is not clear that the functor £(—) is well-
defined, i.e., that £(D,¢p) is a vector bundle. To see this we will introduce a
different construction of the vector bundles £(D(A)).

For clarity, let us for the moment denote £(—) by Eg(—) to stress its dependence
on E. Similarly, for X = Xg, B = Bg,....

Lemma 11.10. Let E,, /E be the unramified extension of E of degree h and (D, vp) €
@ — Modj,. Then for any d > 0 the canonical morphism

Ej, © (B D)?5¢0="" (B, D)¢ ©¥b=""

s an isomorphism. In particular, X ®g En = Xg, and the diagram

E —
@ — Mod, L>(30th

l l_(@EEh
Eg,, ()

@" —Mod ;, —> Cohx,,

commutes (up to natural isomorphism).
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The functor ¢ — Modz — " — Mod, sends (D, ¢p) to (D, ¢%), where ¢}, is
the composition

h—1\x* *
(gOh)*D (L,D ) (WD) ((ph)*D O 2 (SQD) D

An analogous base change holds for every finite extension E’'/E. We only need the
case that E'/E is unramified. We note that By = B, , E= Eh while g, = go%.
Proof. The group Z/hZ = Gal(E},/E) acts on
Ej-semilinearly via 7=% ® pp with invariants

(B®j D)‘P®“’D:“d.

Thus the first claim follows from Hilbert’s theorem 90 (resp. Galois descent). By
general properties of the Proj-construction

Xg, = Proj(@ B =) = Proj( @@ B =)
d>0 d>0

and thus the isomorphism X ®g Ep = Xg, follows from the first statement in the

]

case that (D, ¢) = (E, ¢). The commutativity of the diagram is again a consequence
of the first statement. O

Lemmaimplies that the functor £(—) has values in vector bundles, because
for each p-module this can be checked after pullback to some Xp, and for D(\)
with A = ¢ the pullback E, ®g £(D(A)) is a direct sum of Ox,, (—d).

For each h € N we denote by Ej the unramified extension of E of degree h.
Moreover, we set

Xh = XE;L .

Lemma 11.11. Let A € Q and write A = % with d € Z, r > 0 and d,r coprime.
Then

E(D(N) = (fr)«(Ox, (d)).
Proof. For both sides the pullback along f, are isomorphic to
F = OXh(,d)'f.

For £(D())) this follows from Lemmal(11.10[and for (f;,).(Ox, (d)) because (f;).Ox,
E;, ®g Ox. Thus, both sides define elements in

H'(Gal(E},/E), Aut(F))

with Galois action of Gal(E}/FE) induced by either isomorphism F = f*(E(D(N)))
or F = fX((fr)«Ox, (d)). But Aut(F) = GL,(E}), with Galois action in both cases
given by the natural one on Ej. By Hilbert’s theorem 90

HY(Gal(Ey/E), GL,(En)) = {+}
which finishes the proof. O
We make the following definition.
Definition 11.12. Let A = £ € Q with A\ € Z,r € N and 7 minimal. Then
Ox(A) :=E(D(N)) = fr(Ox,(d)),

o~
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Lemma 11.13. For A € Q the functor £(—) induces an isomorphism
End, mod, (D(A)) = End(Ox (=2)).

Proof. This follows by descent from the statement that Endy, (Ox, (d)) = F for
any d € Z, h > 0. We leave the details as an exercise, cf. [9, Proposition 8.2.8.]. O

Because f, is affine, Lemma [11.11] and our knowledge of the cohomology of the
line bundles Oy, (d) (cf. Proposition implies that we know the cohomology
of the Ox(X), too.

The classification of vector bundles on the Fargues-Fontaine curve is the second
main theorem of the course.

Theorem 11.14 (Fargues-Fontaine, cf. [0, Théoréme 8.2.10.]). The functor £(—)
induces a bijection on isomorphism classes

¢ —Mod ; /isom. = Buny /isom..

By the Dieudonné-Manin classification of ¢-modules, cf. Theorem this
means concretely that each vector bundle on X is a direct sum of the vector bundles
Ox(N). Moreover, the functor £(—) is compatible with the Harder-Narasimhan fil-
tration, and the Harder-Narasimhan filtration of each vector bundle on X splits
(non-canonically). Clearly, the functor £(—) is not equivalence (as the category
¢ — Mod; is abelian, but Bunx not).

A sketch of proof of Theorem [T1.14] will occupy us for two lectures. For the proof
we will have to relate vector bundles on X to p-adic Hodge theory for p-divisible
groups.

12. LECTURE OF 15.01.2020: p-DIVISIBLE GROUPS AND A;,s~COHOMOLOGY (BY
BEN HEUER)

Recall that last time we stated our second main theorem
Theorem 12.1. The functor £ defines a bijection of isomorphism classes
¢—Modz/ ~— Bunx,./ ~

A sketch of proof will be presented next time. Today, we discuss a few things we
need for the proof. On the way, we will see some applications of Xgg to p-divisible
groups and p-adic Hodge theory.

For this we will need some background that strictly speaking isn’t in the pre-
requisites of this course (so don’t worry if there are bits you don’t understand, this
lecture is a bit of a “survey” anyway). We therefore start with a crash course on
p-divisible groups

Definition 12.2. Let R be a ring. A p-divisible group G over R of height h is a
collection (G, in)nen of finite flat group schemeﬂ G, of order p"™ over R together
with closed immersions i, : G, — Gp41 such that the following sequence is left
exact:

0= Gn 2 Gy 25 G

51Alvvays assumed to be commutative.
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We also write G[p"] := G,,. It follows from the axioms that we have a short
exact sequencd™ for any n, m:

0= Gp" = G t™] s GIp™ - 0.

where j is induced from [p"] : G[p"T™] — G[p"*t™]. Surjectivity on the right is the
reason for the name “p-divisible”.

Example 12.3. e Let G, = Z%Z/Z be the constant group scheme, and i,

the natural inclusion. This defines a p-divisible group called Q,/Z, of
height 1.

e Let G,, = ppn := Spec(R[X]/(X?" —1)) be the group scheme of p"-th unit
roots. This defines a p-divisible group ppe of height 1.

e Let A be an abelian scheme over R of dimension d. Then the p™-torsion
G, := Alp"] defines a p-divisible group A[p>] of height 2d. The p-divisible
group A[p™] is equipped with an action of Z, ®z Endr(A). In particular,
each idempotent in this ring yields a decomposition of A[p>°] into p-divisible
groups, which usually cannot be obtained from the previous examples.

Definition 12.4. For any p-divisible group G, we obtain its dual p-divisible group
GY by letting (GY),, := (G,)" = Hom(G,,G,,) be the Cartier dual of G,,, and
i = Y,

The natural evaluation isomorphisms G,, — (G,/)" are compatible and define an
isomorphism of p-divisible groups

G — (GY)Y
. The functor G + GV is thus a (contravariant) auto-duality.
Example 12.5. o (Qp/Zy)Y = ppee and (pp)” = Qp/Zy,.

o A[p>®]Y = AY[p>] where AV is the dual abelian variety.

We now specialise to the case of C' a complete algebraically closed extension of
Qp and R = O¢. This is the case we shall focus on today.

Definition 12.6. For a p-divisible group G over O¢, we define its Tate module to

be
T,G = lim ( ... P apr0) B aple) » 1),
Example 12.7. o We have T,,(Q,/Z,) = Z,.

o We write Tpppe =: Zp(1) for the Tate module of p, over Oc¢. It is
isomorphic to Zj,, but the isomorphism depends on a choice of compatible
p"-th roots of unity (,». For any Z,-module M and n € Z we set M(n) :=
M ®z, Z,(1)®™ (interpreted as the module dual for n < 0)

o T,(A[p>*]) = T,A. This can be canonically identified with the dual of
H} (A, Z,) (and when we work over any field K, this identification is Galois
equivariant).

Lemma 12.8. (1) There is a natural isomorphism of Z,-modules

T,G = Hom(Qy /Zyp, G).

52p5 fppf-sheaves.
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(2) The natural map T,G = Hom(Q,/Z,,G) LS Hom(GY, pipe) defines a
perfect pairing

T,G x TG = Typpe = Zp(1).

Proof. Exercise. Use Hom(Q,/Zy, G) 2= Hom(z,, T,G) <2 T,G O
For G = A[p], this duality pairing can be identified with the Weil pairing.
It is an important task in arithmetics to classify all p-divisible groups over a
given ring, by (semi-)linear algebra. This was first known for perfect fields k of
characteristic p:

Theorem 12.9 (Dieudonné, Cartier (60’s)). Let k be a perfect field of characteristic
p. Then there is an exact equivalence of categories

M : {p-divisible groups over k} — {Dieudonné modules over W (k)}.

Here a Dieudonné module is a finite free W(k)-module together with a @-linear
action of an operator F' and a ¢~ '-linear action of an operator V such that FV =
p=VF.

Actually, they prove this for finite flat group schemes, the case of p-divisible
groups follows. In fact, p-divisible groups where historically introduced after this.

Remark 12.10. In this setting, one often instead uses a contra-variant version of
Dieudonné modules, making the above an anti-equivalence. We will today use the
co-variant version. The two can be translated into each other via the auto-duality
G +— GY. Note: Going from contra to co does not affect the linearity properties of
F and V| but it means that now F' on M corresponds to V on G and vice versa.

Nowadays, one can classify p-divisible groups in many more cases e.g. over per-
fectoid bases. Grothendieck—Messing and Berthelot-Breen—Messing (70°) extended
the definition of Dieudonné modules to any ring R on which p is nilpotent, using
the formalism of the crystalline site. Important for us is the following case:

Let C be as before and consider the semi—perfecﬁ ring O¢/p. Recall that we
had defined in Definition a 1ing Ains — Acrys.

Definition 12.11. A Dieudonné module over O¢/p is a finite free Ac,ys-module
M together with linear operators

F:M®a.,.e
ViM—>M®®yu

Acrys = M
crys, P ACI“yS

such that F'V =p=VF.

Proposition 12.12 (Grothendieck—Messing, Scholze-Weinstein). There is a fully
faithful covariant functor

Merys(—) = {p-divisible groups over Oc /p} — {Dieudonné modules over Acys}.
We have tk(Meyys(G)) = ht(G) and Meys(GY) = Merys(G)Y, the dual Dieudonné

module.

The definition of M,ys(—) is due to Grothendieck-Messing (cf. [17]), fully faith-
fulness was proven by Scholze-Weinstein (cf. [21]).

53An Fp-algebra is semiperfect if its Frobenius is surjective.
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Example 12.13. o M(Qp,/Zy) = Agrys with F =p, V =1.
o M(ppe) =Acrys with F =1,V =p.
e If A is an abelian scheme over O¢/p, then M(A[p™])Y = H},,(A) can be
naturally identified with the crystalline cohomology, in a way that identifies

F with the Frobenius .

To a p-divisible group over O¢ we have therefore associated two very different
invariants, 7,G and M (G o, p). How can one compare T,G and M(Go,/p), can
one perhaps recover one from the other? In the case of G = A[p™] for an abelian
variety A over O¢, this is essentially asking how to compare H} (Ac,Z,) and
H(}rys(AOC/P‘ACYYS)‘

The mathematical field studying such comparison isomorphisms between p-adic
cohomology theories is p-adic Hodge theory as was explained in Section

Theorem 12.14 ([I, Theorem 14.5.(i)], ’16). Let X be a smooth proper formal
scheme over Oc. Then for any i > 0, we have an étale-crystalline comparison
isomorphism

Hét (Xc, Zp) Xz, Bcrys = Hérys(XOc/P) ®Acrys Bcrys-

Remark 12.15. e Recall from Section [2] that we think of this as a p-adic
analogue of the following complex comparison isomorphism: Let Y be a
smooth variety over C, then

H. . (Y(C),Z) 27 C = Hix(Y).

sing(
In the p-adic version, the role of the ring of periods C (that one needs for
the Poincaré-Lemma) is played by the much more complicated ring Be,ys
defined after Proposition [T0.15]

o If X comes via base-change from Ok for K/Q, finite, this is already due
to Tsuji, after previous work by Fontaine-Messing, Bloch-Kato and Falt-
ings). One can then also identify the Galois actions on both sides. In
particular, one obtains that the Galois representation V := H*(X¢,Q,) is
“crystalline”, i.e., we have

dimg, V = dimg, (V ®g, Berys)“*
is an isomorphism.

Back to p-divisible groups. It turns out that such a comparison holds in this
case, too.

Proposition 12.16. Let G be a p-divisible group over Oc. We write M(G) for
the Dieudonné module associated to Go,,/p. Then there is a natural p-equivariant
isomorphism

BG : TpG ®ZP Bcrys = M<G) XA Bcrys-
After tensoring up to B;{R, the respective BJR—sublattices satisfy

T,G ®z, Biz € 2= M(G) ®4.,,. Bizx €t (M(G) ®a..,. Bin)-

crys

crys

This proposition implies Theorem for abelian varieties with good reduction.

Sketch of proof. We’ll construct S and an inverse: Recall that T,G = Homo, (Qp/Zy, G).
Given any o : Q,/Z, — G, we can base change it to O¢/p and apply M(—) to get
a -equivariant map

M(a): Acrys = M(Qp/Zp) = M(Gogyp)-
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We define 8¢ by sending « to the image of 1. Extending Z,-linearly, this defines a
map

T,G ®z, Acrys — M(G).
To show that this is an isomorphism after inverting p and ¢, we construct a (generic)
inverse mapping using the dual: Applying the discussion so far to GV, we obtain a
map

(3) 6GV : TP(GV) ®Zp Acrys — M(Gv)
The inverse will be induced by its Acrys-module dual (Bev)Y (this is a common
trick).

Using M(GY) = M(G)Y, we have a natural isomorphism
M(G) = M(GY)"
(this is an isomorphism by full faithfulness of M but we don’t need this). On the
other hand, we have by Lemma Lemma [12.8]2
T,(G") = Hom(T,,G, Typp<) = (T,G)" ®z, Lp(1).

Recall Acrys(—1) = (Acrys ®z, Zp(1))Y. Upon applying duals to (3], we then obtain
a map

M(G) = M(GY)Y <005 (T,(GY) @3, Aays)” = TG @2, Aerys(—1).

Using the natural B -linear isomorphism

Zp(l) ®z, B . —tBT

crys crys?

e Qx> log(e?) z=t-a-x,
we thus get a map

M(G)® B,

crys

— T,G ®z, Bi,(—1) = T,G ®z, t "B

crys crys”®

One can check that after passing to Berys = Bctys[%], this defines an inverse to
Ba- O
We now start to interpret this result via the modifications of vector bundles on

the Fargues—Fontaine curve. Take £ = Q,, m = p. Recall that
Xrp = Proj(P) = Proj(®az0(Bfy,)*~"")

crys
is the Fargues—Fontaine curve, a Dedekind scheme over Q, (see Proposition
Theorem . Recall also that the natural morphism
0: A — Oc¢

defines a point co € Xpr with associated closed immersion

ico : Spec(C) — Xpp.
By definition, the completion of Xwp at this point is given by

Spec(Bar™) — Xpr

where Bqr ™ is a DVR with pseudo-uniformizer ¢ = log([¢]), € = (1, ¢, Cp2,---) (see
Definition Section [10)).

Here the element ¢ is already defined in the smaller ring Ajns — Acrys — BCTR.
Moreover,

e BT

crys crys [%] 3
1
t

=A
L4 Bcrys = Bf,

crys[ ]a
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e Byr = Bg[1], a discretely valued field.

The Fargues—Fontaine curve organises all these p-adic period rings in a nice, geo-
metric way.

Definition 12.17. Let G be a p-divisible group over O¢/p. We can associate to
G a quasi-coherent sheaf on Xpp by setting

£(G) = @Mcrys(c;)[%]w:pd
d>0

Here, — denotes the sheaf associated to a graded module. We will soon see that
this is in fact a vector bundle on Xgp of rank ht(G).

By Proposition Proposition [I2.16] there is a natural morphism
ﬂG : TPG ®Zp OXFF — 5(G)
that is an isomorphism over the locus Xpp \ {oco} where ¢ is invertible:

Spec(C) <= Xpp +—— Xpr \ {o0}

Corollary 12.18. Let F :=T,(G) ®z, Oxpp. Then there is a natural short exact
sequence of sheaves on Xpp

0= F L9 £(G) = icexW = 0

where W is the fin. dim. C-vector space given by the image of M(G) ®a
under

+
crys BdR

T,G ®z, t Bl 21D, 1.6 @y C(-1).

Proof. 1t is clear that the cokernel of F — £(G) is supported at co. To calculate
the stalk at oo, we need to reduce mod C, i.e. tensor with Bf — Bi; — C. We
then use the diagram

0 —— T,G® Banm —— M(G) ® Bfj, ——— coker ——— 0

H I 5

00— T,G® B —— T,6ot ' Bl ““Y 16eo(-1) —— 0.

O
Definition 12.19. A short exact sequence on Xgp of the form

0 F L5 F S iaW =0

where F, F' are vector bundles and W is a finite dimensional C-vector space is called
a minuscule modification (at co). We have thus defined a functor (important
for next time)

{p-divisible groups over O¢} — {minuscule modifications on Xrr}.
Sending a minuscule modification to its cokernel defines a forgetful morphism
{minuscule modifications on Xpp} — {W C T,,G ®z, C(—1)}.

The following amazing Theorem says that the data of T},G together with W is
equivalent to the datum of G:
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Theorem 12.20 ([22], Scholze-Weinstein '12). The functor defined above
pairs (T, W) consisting of
{p-divisible groups over Oc} — { ®T finite free Z,-module,
oW CT®z, C(—1)

is an equivalence of categories.

Remark 12.21. e This is in stark contrast to the usual classifications of
p-divisible groups in terms of semi-liner algebra data.

e We think of this as an analogue to Riemann’s Theorem: complex abelian
varieties A are equivalent to pairs (A, W) of a finite free Z-module A and
W C A ®z C such that (A, W) is a polarisable Hodge structure of weight
-1.

e There is a second, equivalent, way to characterise W, namely as the Hodge—
Tate filtration Lie(G) C T,G ®z, C(—1) of G (this is the definition in [22]).
In particular,

— For G =Q,/Z,, we have (T, W) = (Z,,C(-1) C C(-1)).

— For G = ppeo, we have (T, W) = (Z,(1),0 C C).

— For G = A[p*], the Hodge—Tate filtration has dim W = dim A and is
of the form

0— W =Lie(4) > T,A® C(-1) - wa(-1) — 0.

We discuss in more details modifications of vector bundles on Xgp. Our next
goal is to see that one can in fact reconstruct £(G) from the trivial vector bun-
dle T,G ® Ox,, when given the data of the B;‘R—lattice E C T,G ®z, Byr from
Prop. Proposition [12.16] By the second part of the proposition, for this to work,
the lattice must satisfy

T,G ®z, Bz CEC t(T,G ®z, Bi).
Definition 12.22. Such a lattice is called a minuscule lattice.
We note that taking the image under 6 defines an equivalence
{minuscule lattices in T,G ®z, Biz} — {sub-C-vector spaces of T,G ®z, C(—1)}

(and in particular, one can also state Theorem Theorem in terms of minuscule
B -lattices).

The idea is that this gives “infinitesimal information at co” that one use to
extend F to a new vector bundle over all of Xpp. This hinges on the following
algebra fact (see [?, Tag 0BNI] for a discussion in greater generality):

Lemma 12.23 (Beauville-Laszlo). Let A be a Noetherian ring and let f € A.
Consider the completion A := @neN A/f™. Then the natural functor

A—=Mod —A[4]-Mod X A1) -Mod A—Mod

M~ (M[}],M,can)

is an equivalence of categories. Moreover, it restricts to an equivalence of categories
on finite projective modules.
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Here the category on the right is given by triples (N7, Na, ) where N; is an
A[%]—module, N3 is an A-module, and « is an A[%]—linear isomorphism

. AT AT
Oz.Nl ®A[%] A[?]*)NQ(@AA[}C]

The functor is given by sending M (M[%], M, can).

Proof. We explain how the inverse is constructed: Let (N1, N2, «) be an object in
the RHS. We define M as the kernel of the natural map

O%M%Nl@NgﬂNg(@A\A\[%].

Exercise in commutative algebra: This defines an inverse. Hint: Use the exact
sequence
0= A= Alf]xA—A[$] =0

and the fact that A — A[1] x A is faithfully flat (flatness uses A Noetherian).
The statement about finite proj. modules follows by fpqc-descent along A —

AlF] x A. O
The following Corollary explains what the Lemma means geometrically

Corollary 12.24. Let X be a Dedekind scheme and let x € X be a closed point.
Let X := Spec(Ox ) — X be the completion at x. Then the natural functor

Buny — BunX\{I} XBung, (. Bun 3

is an equivalence of categories.

Proof. By passing to an open neighbourhood of z, we can without loss of generality
assume that X is affine. After shrinking X = Spec(A) if necessary, x is cut out by
a single f € A since X is Dedekind, and we can apply Beauville-Laszlo. ([

Definition 12.25. A (finite free) Breuil-Kisin—Fargues module (BKF-module) is
a finite free Aj-module M together with an A;,¢-linear isomorphism

o Mg = Mg

A Breuil-Kisin-Fargues module can be thought of as a, not necessarily minuscule,
Dieudonné module in mixed-characteristic.

Theorem 12.26 (Fargues, [?, Thm 14.1.1]). The following categories are equiva-
lent:

(1) Breuil-Kisin—Fargues modules,

(2) Quadruples (F,F',3,T) consisting of vector bundles F,F' on Xpp such
that F is trivial, B : Fxpp\{cc} — .ﬂ’XFF\{OO}, and T C H°(Xfp, F) is a
Zyp-lattice,

(3) Pairs (T,Z) where T is a finite free Z,-module and = C T ®z, Bar is a
BCTR-lattice.

This restricts to an equivalence of categories

(1) BKF-modules such that M C pp (M) C ﬁM,

(2) Quadruples for which B extends to a minuscule modification,

(3) Pairs where = is minuscule,

(4) p-divisible groups over Oc¢.
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Proof. We first show that 2 and 3 are equivalent:

Recall that H)(Xpp, Oxpp) = Qp. Consequently, the category of trivial vector
bundles on X is equivalent to the category of finite dimensional Q, vector space
via the functors

(4) F —H(Xpp, F)
(5) |4 ®Qp OXFF V.

Under this equivalence, the datum of T C H°(Xpp, F) corresponds to a Z,-lattice
TCV.
We now apply Beauville-Laszlo glueing to the diagram

Spec(BérR) e Xrr
Spec(Bar) —% Xpp \ {00}

Starting with (F,F’, 8,T), we now have an isomorphism

* -k * B .«
Loo’nﬁ T ®Zp Bgr = ZOO,U(T ®Zp OXFF\{oo}) = LOO,7]‘7:|XFF\{OO} — Zoo,n]:\/XFF\{oc}

and we can define = as the preimage of H(Spec(BjR), 15 F).
Conversely, given (T,=), we obtain a vector bundle 7’ on Xgr by extending

LsomF|Xpr\{oo} = T @z, Bar
according to the B(TR—sublattice = C T ®z, Bar-

(1]

=5 F < L 3F
|

~

T ®Zp Bagr «— T ®Zp OXFF\{oo} via 5

These two constructions are mutually inverse by Beauville-Laszlo.
1)= 3) Given a BKF-module, we can associate to it a pair (T, Z) by sending

M (T = (M ®a,, W(C")#M®¢=1 2 = M ®4,, Bly)-

One can check that T'®z, Bqr = M ®4,,; Bar, so E really defines a lattice (in fact,
this is already true over the much smaller ring Ainf[%] where p = [e] — 1) see [T}
Lemma 4.26].

2) = 1) (sketch) Conversely, given F’' we get the associated BKF-module using
the adic Fargues—Fontaine curve (which we didn’t discuss). There is an analytic
adic space

inf

Y = Spa(Ains, Ain) (p[p’] # 0)
such that Xpp = y/goz. There is also a map Xrp — Xpr. Pulling back along

Y — Xpp — Xrr

we pick up a g-action. By a Theorem of Kedlaya, any such vector bundle on )
comes from an Ajpr-module M. The descent datum along ) — Xpp is precisely
the map @jy.

The second part follows from the Theorem of Scholze-Weinstein. In fact, it turns
out that one has M ® Agrys = Merys(G). O
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In summary, we have discussed functors
pairs (T, Z) consisting of
o T finite free Z,-module,
e=CT®y Bix
G —=(T,G®z, Oxpp, E(G), Ba, T,G) —  (T,G,E).
What is the Breuil-Kisin—Fargues module good for? In the case of G = A[p®],
it is this thing that sees the crystalline realisation of G, namely H} (Aos/p)- In

crys
this sense, the lattice in part 3 is from the Hodge-de Rham comparison.

In general, we can use BKF to recover the Dieudonné module of the special fibre
Gk:

Proposition 12.27 ([?, Cor 14.4.4.]). The Dieudonné module associated to Gy, is
M ®p,,, W(k), where Ajng — W (k) is the natural map.

p-divisible groups minuscule modifications )
— =

over O¢ of vector bundes on Xgp

inf

This shows the usefulness of BKF-modules. Without the intermediate step of
passing to BKF-modules, it’s not clear how to associate a Dieudonné module to
(T,E).

We end our discussion with a (very short) glimpse on the important paper [I],
also called “BMS 1”. In the case of G = A[p™] coming from an abelian vari-
ety, the Breuil-Kisin—Fargues module M is an A -module that recovers both the
crystalline cohomology

Hirys(Aoc/p) =M ® A
As well as the étale cohomology, via

Hét(AC7Zp) = (M O Ajns W(Cb))w'

Acrys

Moreover, it allows for an integral comparison between the two.

It is natural to wonder whether a similar thing is possible for A replaced by any
proper smooth formal scheme over O¢. Amazingly, this turns out to be possible
— it is the starting point of the work of Bhatt—-Morrow—Scholze, [1]. The basic
idea is to define a cohomology theory that takes values in Breuil-Kisin—Fargues
modules and which specializes to étale, crystalline and de Rham-cohomology. This
later culminated in the prismatic cohomology of Bhatt—Scholze, [3], which greatly
simplified the subject of p-adic cohomology theories.

13. LECTURE OF 22.01.2020: THE CLASSIFICATION OF VECTOR BUNDLES ON X

In this lecture we want to sketch the proof of Theorem [I1.14] i.e., that the functor
E(—): ¢ —Modz — Buny

from p-modules over E to vector bundles on X is essentially surjective. The detailed

proof we are following is presented in [9 Section 8.3.]. The proof of Theorem [11.14]
can be reduced to the following statement.

Theorem 13.1. Let n > 0. Then:

(1) If
0—-&—0x(1/n)>F—0

is a short exact sequence with F a torsion sheaf of degree 1, then £ = O%.
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2) If
0-E—-0%y —>F—0
s a short exact sequence with F a torsion sheaf of degree 1, then for some
me{l,...,m}
E=20x(—1/m)a O ™.

Note that the assumptions of Theorem [I3.1] are implied by the classification of
vector bundles on X. The proof Theorem for E needs Theorem for Ey,
h>1.

We explain how the assumption of Theorem [13.1] is implied by results on p-
divisible groups. The assumptions in both points in Theorem [13.1] are of a similar
shape, which takes the following abstract form: Fix some vector bundle £ € Buny
and consider the set of isomorphism classes of modifications

{€ C & | E/E is a torsion sheaf of degree 1}.

Then we want to draw a conclusion on the possible isomorphism types of £.
The torsion sheaf £'/€ is by assumption isomorphic to i.k(x) for the inclusion
i: Spec(k(z)) — X for some closed point © € X. Let us fix such a closed point
x € X and denote by C := k(c0)/E the corresponding untilt of F. Then we obtain
the set
Mg ={ECE& | E/E~i.CH.
Let &'(x) be the fiber £’ @ k(x) of £ at x. The map
Mg = P(E(2))(C), E=E)EC

is bijective and the different possible isomorphism types of £ give a (highly inter-
esting) decompositiorﬂ of the set

PE'@)C) = [T  PE@NO)g:

[E]€Bunx /isom

For the rest we will assume that E = Q, (although this is not sufficient for a
full proof of Theorem [T1.14] as we also have to consider unramified extension of E
there) We already saw that p-divisible groups over O¢ give rise to minuscule
modifications on the Fargues-Fontaine curve, cf. Corollary

Fix n > 1 and a p-divisible group H/F, of dimension 1 and height n (by
Dieudonné theory H is unique up to isomorphism).

We define

M3t (©)
{(G, @) | Gp-divisible group over O¢,a: G @ Oc/p = H ®r, Oc/p},
thus M%}{n (C) are the “C-points of the adic generic fiber of the Lubin-Tate space”.
Non-canonically,
M3, (C) Zm

On M%‘{W(C’ ) there exists the Gross-Hopkins period morphism

TGH* Ma[fn(c) - (G7 OZ) = (M(H) ®W(prar) c= ]\4(C7Y(9c/p)(X>A ¢ — Lle(G))

crys

54actually a stratification
551f | is arbitrary, one has to replace the constructions with p-divisible groups by their ana-
logues for divisible Og-modules and the same arguments go through, cf. [9, Section 8.3.].
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where we identified
The image of Gross-Hopkins period morphism mgy has been identified by Gross-
Hopkins, [13], and Hartl, [12].

Theorem 13.2. The morphism
Tar: M, (C) = P(E(G)(2))(C) = P"(C)
s surjective.
Note that this implies the first assumption of Theorem [13.1
Conversely, the classification of vector bundles on X, for which there exists
a proof avoiding p-divisible groups, implies Theorem [I3.2} Namely, by Scholze-

Weinstein, cf. Theorem [12.20| resp. [21], the category of p-divisible groups over O¢
is equivalent to the data

{(T,W) | T finite free Z, — lattice, W C T'®z, C(—1) a subvectorspace}

(note that [2I] needs the classification of vector bundles on X). Hence, it suffices
to see that in the Lubin-Tate case the “admissible locus”, i.e., the locus where the
corresponding modification £ C £’ is trivial, is the full ]P’g_l. Let

08— 0x(1/n)—i.(C)—0
be a short exact sequence. It suffices to see that £ is semistable as £ is of degree
0 and thus, if semistable, necessarily trivial (by the classification Theorem [11.14]).
Assume that £ is not semistable. Then by the Harder-Narasimhan filtration there
exists a subbundle
Ox(\) C&
with A > 0. But as rk(E) = n we can write A = £ with m < n. But then
1/n < A

which implies that every morphism Ox(A) — Ox(1/n) is trivial, a contradiction.
Thus, £ must be semistable.

Let us now pass to the second assumption in Theorem that is & = O%.
Let us describe the decomposition

(6) P(&'(2))(C) = T PE@)©O)H
[F]€Buny /isom
assuming the classification of vector bundles on X. By Theorem
P(E'(2))(C) 7 # 0
if and only if F = Oy ™ @ Ox(—1/m) for some n > m > 0. Let
0-E&—=E& —i.C—0

be a short exact sequence. Then & = Ox(—1) if and only if H*(X,€) = 0, or
equivalently, that the morphism

Q2 H(X,&) - H'(X,i,.C)=C
is injective. This condition defines precisely Drinfeld’s upper halfplane.
Definition 13.3. Drinfeld’s upper halfplane Q"1 C (P%')2d is defined as the

(open) complement of all Q,-rational hyperplanes in the adic space (Pg‘l)ad asso-
ciated to the scheme IP”CL_l over C.
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If n = 2, then Q! is the complement of the profinite set P*(Q,) in (P} ')ad.
This of course resembles the formula
H* = P1(C) \ P(R)

for the classical upper/lower halfplane.

By a small argument, the decomposition in (Equation @) is therefore given by
a disjoint union into Drinfeld spaces for varying Q,-rational linear subspaces of
P& (x)).

In [26] Drinfeld introduced a certain deformation space

MDr

of p-divisible groups with additional structure (cf. [I§]) and constructed a period
morphism
Tar: M (C) = P"71(C).
Moreover, he proved the following theorem on the image of myg.
Theorem 13.4 (Drinfeld [26]). The image of
Tar: My, o = Pe!
is precisely Q"1

This implies finally the second assumption of Theorem and thus our sketch

of proof for Theorem [11.14[]")

14. LECTURE OF 29.01.2020: THE THEOREM “WEAKLY ADMISSIBLE IMPLIES
ADMISSIBLE”

In this final lecture we can present the proof of Theorem [2.11] that “weakly
admissible implies admissible” following [9, Section 10.5.3.].

For this lecture let K be a discretely valued non-archimedean extension of Q,
with perfect residue field k = k. Let

Ko=W(k)[1/p] € K
be the maximal unramified subextension of K. Moreover, let K be an algebraic
closure of K, set
Gk = Gal(K/K)
and define

=D

C .=
and
F:=C"= lm C.
zil’
Note that the action of Gx on K extends by continuity to C' and then by functo-
riality to F'. Finally, let
X = Xq,,F
be the Fargues-Fontaine curve associated with Q, and F, and let co € X be the
closed point determined by C, i.e., co is the vanishing locus of the Galois stable

56The lecture ended by a very rough introduction to the relative Fargues-Fontaine curve and
local Shimura varieties which is omitted in the notes. We refer to [?], [?] for more material on
these fascinating topics.
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line Q,t C B¥=P with t = log[e] for 1 # € = (1,(p,{p2,...) € C°. Note that G
acts on Q,t according to the cyclotomic character
Xeyel: G — Z;.
Write N
B;_R = OX,oo
for the completion of X at x with fraction field Bqr and let
Bl Berys = Bl [1/t], Be := BES! = HO(X \ {00}, Ox)

crys? crys

be the various period rings. The Galois group of G acts compatibly on
X7 BXR? BCI‘ySa Be7
First of all let us recall the statement of Theorem [2.111

Theorem 14.1 (Colmez-Fontaine [7]). The category of crystalline Galois repre-
sentations of G is equivalent to the category p —FilMo VI‘?/KO of weakly admissible
filtered p-modules for K.

For the proof we will find fully faithful embeddings
Repg, (Gk) — Bung’(, ¢ — FilMod g/ i, — Bung;(K

into the category of G k-equivariant vector bundles on X. Let C be the intersec-
tion of the essential images. Then C, seen as a full subcategory of Repg, (Gk)
identifies with crystalline Galois representations while C, seen as a full subcategory
of ¢ — FilModg/k,, identifies with the subcategory of weakly admissible filtered
w-modules.

We won’t be able to provide many details and refer to [0, Section 10.5.3.] for
complete proofs.

We need the following theorem of Tate, which in a weaker form was already
mentioned in the first lecture, cf. Theorem [2:3]

Theorem 14.2. Let x: Gk — Z,, be a continuous character and denote by I C
G the ramification subgroup. Then

0, if i > 2 ori arbitrary and x(Ix) is infinite
= K, otherwise

HiW(Gr,C(x)) = {
Proof. Cf. [24]. O

With this theorem we can determine the invariants of Gk in the various period
rings.

Lemma 14.3. The following statements hold true:

(1) K =BG

(2) Ko = Bg;fs. In fact, the canonical morphism K ®k, Berys — Bar s
mjective.

(3) Ko = BSx.

Proof. The filtration {tnB;R}nEZ of Bqr has associated gradeds, as Galois modules,
given by

{C(n)}nez
where C'(n) denotes the twist of C' by the n-th power Xeyel Of the cyclotomic char-
acter. As these powers for n # 0 all have infinite image, C'(n)%% = 0 for n # 0 by
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Theorem This easily implies Bf{ = K. All other claims follow easily from
this and the injectivity of K ®x, Borys — Bar. This injectivity is proven in [9,
Corollaire 10.2.8.]. O

Let
Repr (GK)

be the category of continuous representations of Gk on finite dimensional Q,-vector
spaces.

Definition 14.4. A representation V € RepQP(G k) is called crystalline if the
canonical morphism

(V ®q, BcryS)GK @Ky Berys = V @q, Berys

is an isomorphism.

For example, if G is a p-divisible group over Ok, then the rational Tate module

V(@) = T,G(O)[1/p)

is a crystalline G k-representation by Proposition Replacing Berys by Bgr in
Definition one obtains the notion of a de Rham p-adic representation of G .

One can show that a representation V' € Repg, G is crystalline if and only if

dimg, (V ®q, Berys)* = dimg, V-

We will now pass to equivariant vector bundles on X.

Definition 14.5. Let £ € Bunx. A Gg-action on £ is the data of isomorphisms
Co: 0 EXE

for each o € G such that ¢, = ¢; o 7*(¢,) for all 0,7 € Gk.

Note that we did not demand any continuity of the action, and we will have
to fix this. As remarked G acts on X leaving the point oo fixed. Moreover, the

G i-action on B(;FR is continuous for the canonical topology on B;R.
As there is a Gi-equivariant morphism

Spec(Big) — X

any G g-action on a vector bundle £ € Buny gives rise to a semilinear G g-action
on the finite free B:{R—module ELN =E®oy B(J{R. If R is any topological ring, then
by invariance of the product topology on R™ under the group GL,(R), any finite
free R-module has a canonical topology. This applies for example to R = Q,, or
R = Bj;.

Lemma 14.6. Let V be a finite dimensional Qp-vector space with an action of (the
abstract group) Gg. Then the action morphism G xV —V is continuouﬂ i.e.,
V' is a p-adic representation of Gk, if and only if the semilinear action morphism

Gk x (V®q, Big) =V ®q, Bix

s continuous.

570r equivalently, the morphism Gg — GL(V) with GL(V) equipped with the canonical
topology, is continuous.
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Proof. If the G-action on V is continuous, then clearly the G g-semilinear action
on V ®q, B(’;’R is continuous. Conversely, the canonical topology V' is the subspace
topology for the canonical topology on the B:{R—module V ®q, Bg‘R. O

This motivates the following definition of an equivariant G g-bundle on X.

Definition 14.7. An Gk-equivariant vector bundle on X is a pair (&, (¢s)oecay)
of a vector bundle £ € Bunyx and an action (¢,)secq, of Gk on it such that the
associated semilinear G g-action on the finite free B;’R—module &L is continuous.
Let us denote the category of equivariant G g-vector bundles by Bun?{‘.

As a corollary of the classification of vector bundles on X, cf. Theorem we
obtain the following.

Corollary 14.8. The functor
Repg, Gk — Bun§*, V — V &g, Ox

is fully faithful with essential image all G i -equivariant vector bundles (€, (¢o)recGr )
whose underlying vector bundle £ is semistable of slope 0, i.e., trivial.

Next let us introduce the category of filtered ¢-modules over K and see how it
embeds into the category Bung‘;" of equivariant vector bundles.

Definition 14.9. A filtered ¢-module (D, ¢p, Fil®*) over K is a pp-module (D, pp) €
© — Modg, together with a filtration Fil® on Dg := D @k, K. We denote by

¢ — FilMod gk,
the category of filtered ¢-modules over K.
Using Fontaine’s formalism of period rings it is not difficult to construct a functor
F: Repg*(Gk) = ¢ — FilMod g /rc, -
Namely, let V' be a crystalline G i-representation. Then
D = Deyys(V) := (V ®gq, Berys)“"

with ¢p induced by ¢ on Beys is a p-module over Ky = Bg;fs of dimension
dimg, (V'). Moreover,

K @K, D= Dar(V) = (V ®q, Bar)“~
acquires naturally a filtration Fil® from Bgr. Sending
Vi (D, YD, Fll.)

is our desired functor F. Using the fundamental exact sequence of p-adic Hodge
theory, cf. Theorem [10.1] it is not difficult to see that

V 2 Fil’((Borys ®g, V)?71),

which implies that F is fully faithful (but we don’t know that its images are weakly
admissible yet).

The category of filtered ¢-modules is not abelian, but naturally an exact category
by declaring that a sequence

(D1, ¢p,,Fil*) = (D2, ¢p,,Fil*) = (D3, ¢p,, Fil*)



82 JOHANNES ANSCHUTZ

is exact if it is exact on the associated gradeds. To each finite dimensional K-vector
space W with a filtration Fil® one can associate the degree

deg(W, Fil®) := ZidingriW €Z.
icZ
Taking as the “generic fiber functor” the functor
(W,Fil*W) —» W

one obtains a Harder-Narasimhan formalism for the category of filtered K-vector
spaces, cf. Section [[1} Define

deg: ¢ — FilModg,x, — Z, (D, ¢p,Fil®) — deg(Dg,Fil®) — deg(D, vp))
/Ko

and
tk(D, ¢p, Fil*) := dimg, D.

This yields a Harder-Narasimhan formalism for the category ¢ — FilModg, Ko‘ﬁ
In modern terminology the condition for a filtered ¢-module to be weakly ad-
missible is just semistability of slope 0.

Definition 14.10. A filtered y-module (D, ¢p,Fil®) is weakly admissible if it is
semistable of slope 0 (with respect to the above Harder-Narasimhan formalism). We
denote by ¢ — FilMod ., the category of weakly admissible filtered ¢-modules.

By the general Harder-Narasimhan formalism the category ¢ — FilMod‘}'{a/ Ko 18
abelian.
We will now start to construct a fully faithful functor

¢ — FilMod /g, — Bun¥¥.
We start by relating p-modules with B,-representations.

Definition 14.11. We denote by Repp_ G the category of finite locally free B.-
modules M with a semilinear G g-action such that there exists a G g-stable B(YR—
lattice 2 C Bqr ®p, M on which the G g-action is continuous (with respect to the
canonical topology on Z).

Clearly, there is a well-defined functor
Bun§* — Repg, Gk, & — H(X \ {0}, €).
Proposition 14.12. The functors
D: Repp, Gk — ¢ — Modk,, W (W ®p, Beys)©"

and
V: L MOdKO - RechGK7 (D, 90) = (D ®Ko Bcrys)(pD(Xw:l

are adjoint. The functor V is fully faithful and M € Repg G is in the essential
image if and only if D(V(M)) = M.

Proof. For the proof we refer to [9, Proposition 10.2.12.]. |

58With generic fiber functor F(D, ¢p, Fil®) = D.
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Surprisingly, the category Repp Gk is abelian, cf. [9, Proposition 10.1.3.]. In-
deed, by looking at the support of the cokerneﬂ of a morphism of B.-representations
this is implied by the fact that the only G i-invariant non-trivial closed subschemes
of X are supported at oo, cf. [9, Proposition 10.1.1.].

The filtration is brought into the picture by the following lemma.

Lemma 14.13. Let W be a finite dimensional K -vector space. Then the map
{filtrationsonW} — {G g — stable Bl — lattices in W @k Bar}

defined by
Fil* — Fil°(V @k Bar)

is bijective with inverse Z +— {(t"E)%% C (Bgr ®pt E)9K = Whez.
Proof. Cf. [9, Proposition 10.4.3.]. O
We now can construct our desired fully faithful functor
¢ — FilModg/r, — Bung’(.
Proposition 14.14. The category M defined as the 2-pull back
M — ¢ — Modkg,
L)
Bung’;K — Repp Gk
is equivalent to p — FilMod gk, -
Proof. By Proposition [I4.12] the functor
¢ —Modg, — Repg Gk

is fully faithful. Therefore the proposition follows from Lemma [14.13|invoking the
Beauville-Laszlo lemma, cf. Lemma [12.23] O

Let us denote by
E(—): ¢ — FilModg /g, =M — Bung’;K

the (fully faithful) functor deduced from Proposition [14.14]
Before sketching the proof of Theorem [I4.1] we need the following lemma.

Lemma 14.15. The functor
E(—): ¢ — FilMod g, — Bun§s
preserves degrees and Harder-Narasimhan ﬁltmtionsﬂ

Proof. See |9, Lemme 10.5.5.] and [9, Proposition 10.5.6.]. O
We can now deduce Theorem [T4.1]

59As B, isa principal ideal domain, the kernel of each morphism of Be-representations is again
a Be-representation, i.e., finite free over Be.

60The Harder-Narasimhan on Bunyx yields one on Bung’;K by the canonicity of the Harder-
Narasimhan filtration.
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Proof. (of Theorem [14.1)) By Theorem [11.14] the functor

Repg, Gk — Bun§¥, Vi V ®g, Ox
is fully faithful with essential image given by the category Bung’;K’SSt’O of all equi-
variant vector bundles on X which are semistable of slope 0. Thus by Lemma [14.15
we obtain a cartesian diagram

Repg, (Gk) = Bun§< =0 — - Bun§x
¢ — FilMod}) g, ——— ¢ — FilMod gk,

But using Proposition we can calculate the fiber product differently, namely
Repr (GK) XBungK © — FllMOdK/KO

1%

Repr (GK) XBun)G(K (BUH)G(K XRepBe (Gk) © — MOdK/KO)
RGPQ,,(GK) XRepp, (Gk) P — MOdK/KO-

crys

But this 2-fiber product is precisely the category Repr G of crystalline Galois
representations! Namely, by the adjunction in Proposition for V e Repg, Gk
the B.-representation V ®q, B lies in the image of the functor

1%

V: ¢ —Modg, — Repg Gk
if and only if the canonical morphism
(V ®QP B(:rys)wz1 (®B,i Bcrys -V ®QP Bcrys

is an isomorphism, i.e., if and only if V is crystalline. This finishes the sketch of
proof. O
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